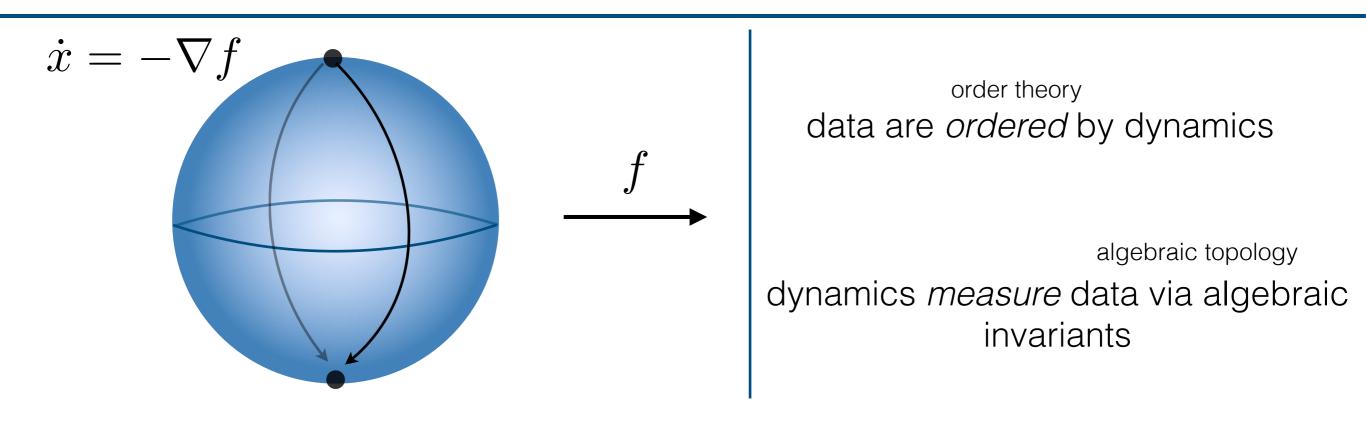
computing connection matrices

Kelly Spendlove Department of Mathematics Rutgers University

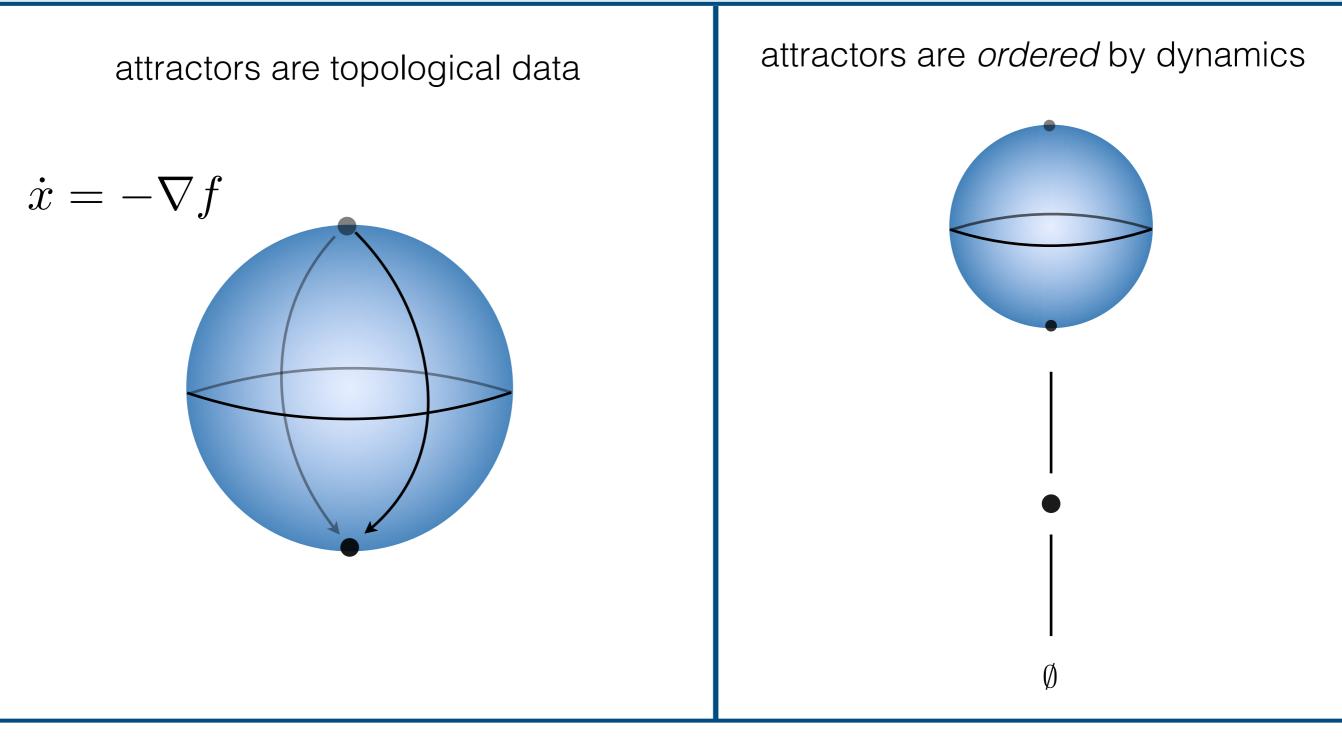
Applied Algebraic Topology Conference, August 2017

philosophy

- a dynamical system assembles topological data
- the data are ordered and measured with algebra
- continuous
 computational Conley theory combinatorial
- connection matrix is a representative of equivalence class

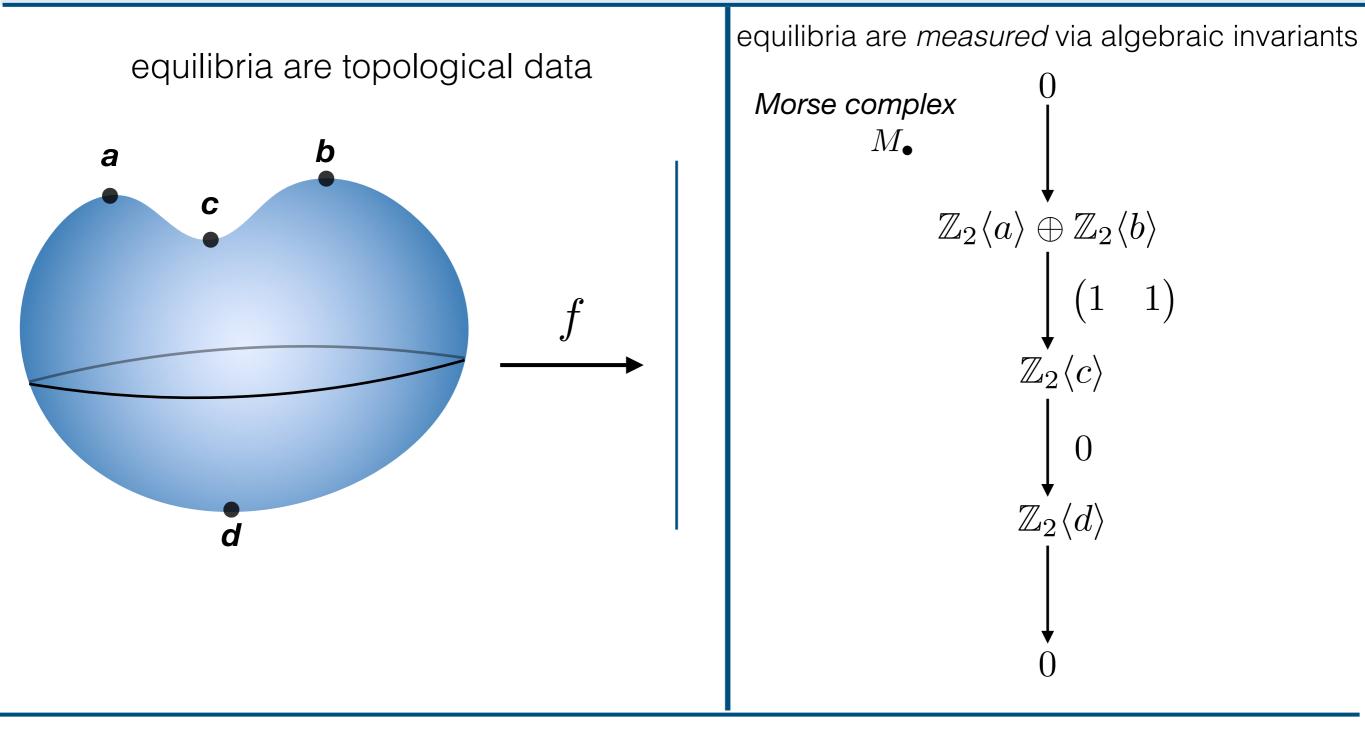


lattice of attractors



A is an attractor if \exists (regular, closed) $N \supseteq A$ such that $\omega(N) = A$ for a critical $f^{-1}(-\infty, a]$ is an attractor

Morse theory

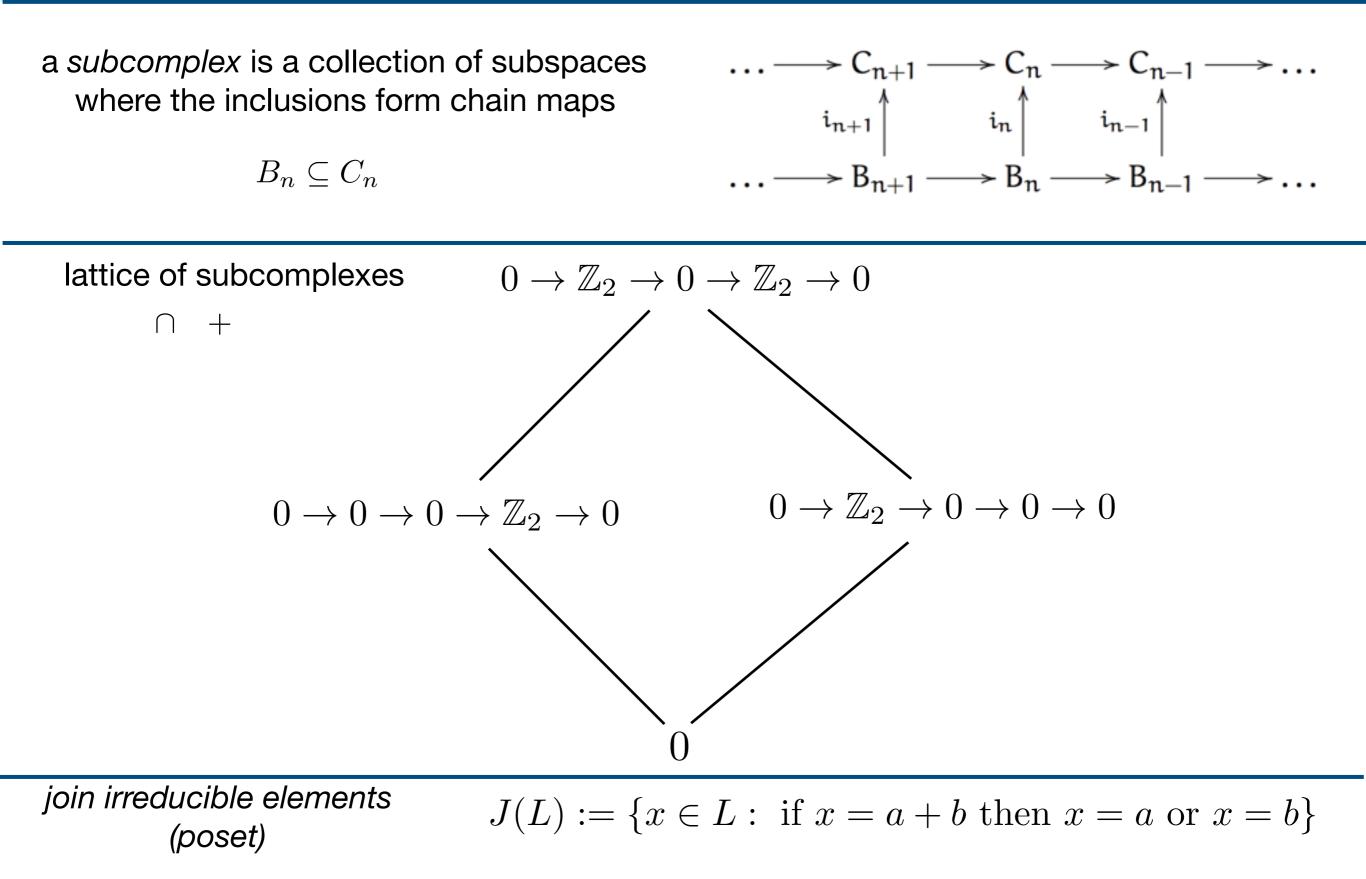


Morse theory is the prototypical example

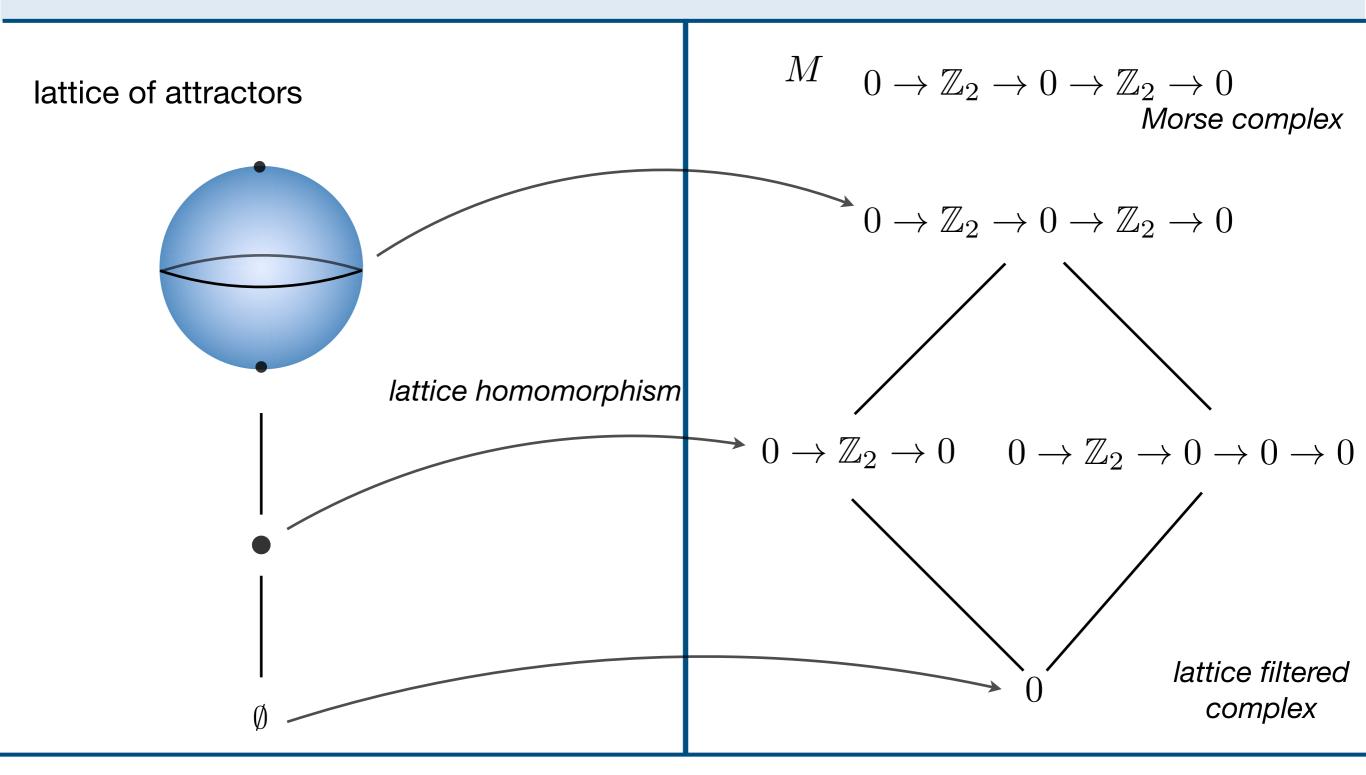
 $H(M_{\bullet}(f)) \cong H(X)$

Morse index is a measurement of instability

lattice of subcomplexes

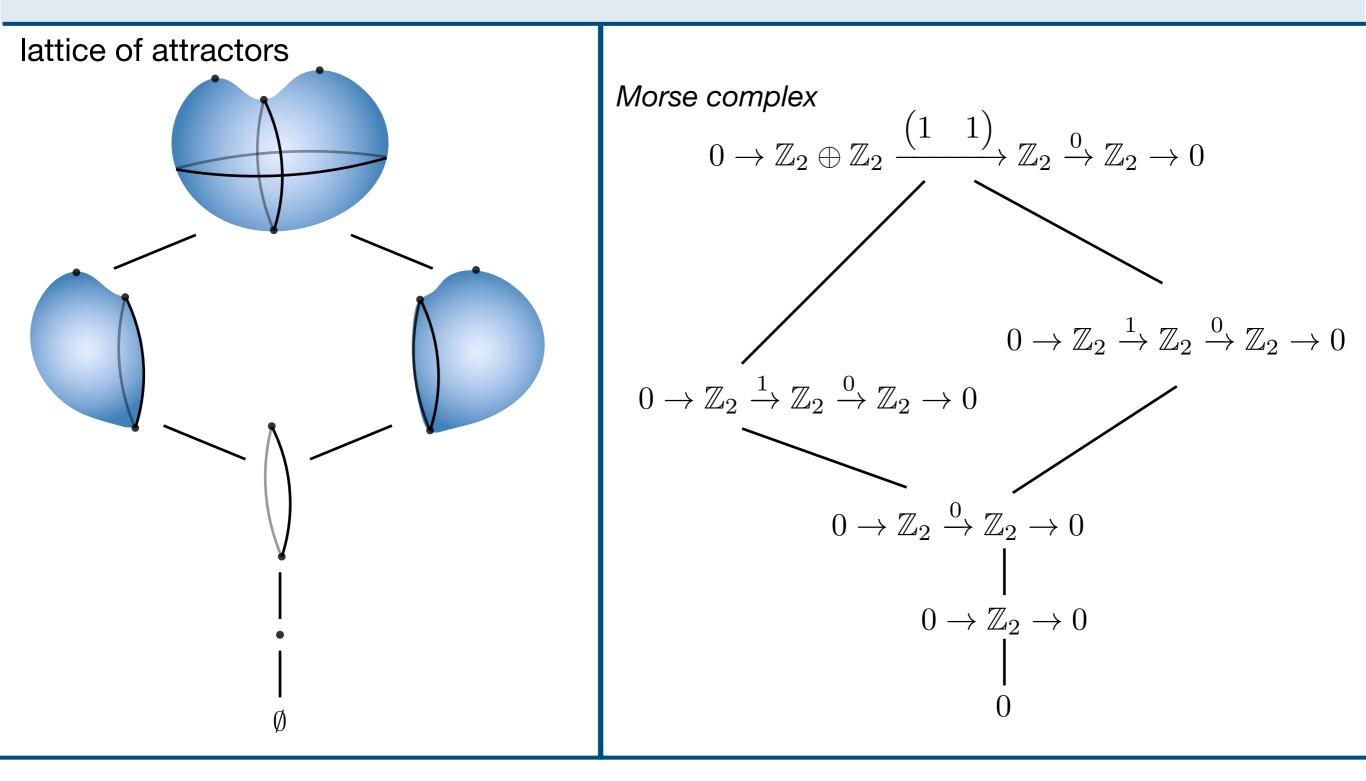


a Morse representation



a bridge between order theory and algebraic topology for a critical $f^{-1}(-\infty, a] \rightsquigarrow \{\mathbb{Z}_2 \langle b \rangle : f(b) \leq f(a)\}$

a Conley representation

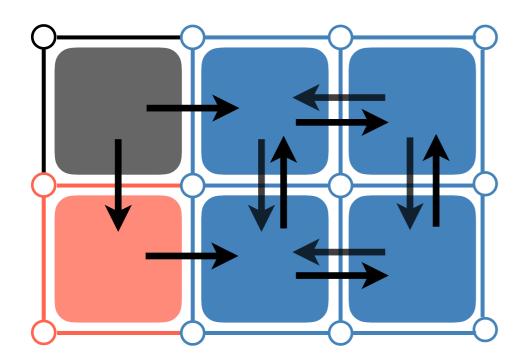


Conley's insight: attractors organize the global behavior

...filter by attractors (not sublevel sets)

as a data structure

dynamics on X...



... gives a lattice of attractors

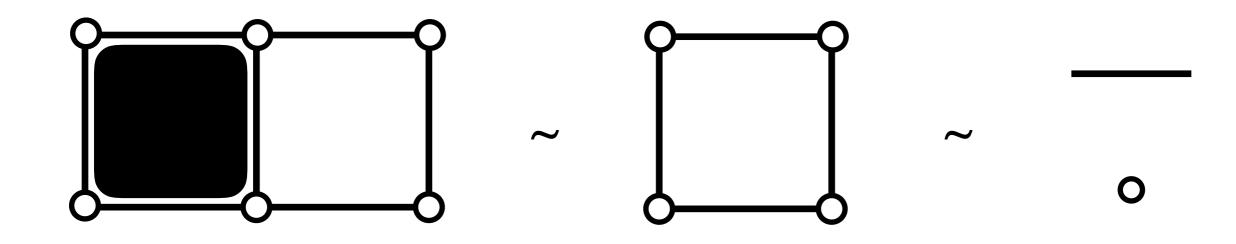
$$p \in J(L) \quad X_p/X_{Pred(p)}$$

Conley index $H(X_p/X_{Pred(p)})$

we care about the algebraic invariants of this structure: homology, relative homology

homology as data reduction

often we only care about chain complexes up to homology...

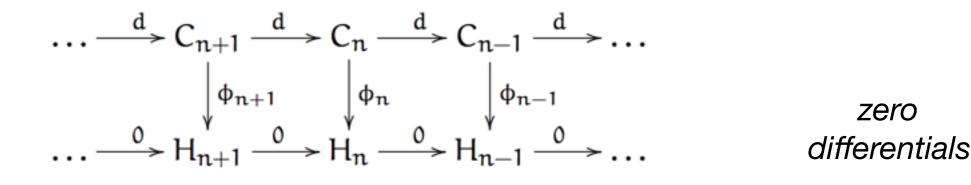


...so it is natural to make an equivalence class

 $B \sim_D C$ if there is a chain map $B \xrightarrow{\phi}$ with $H(B) \stackrel{\phi^*}{\cong} H(C)$ $B \sim_K C$ if B, C are chain homotopy equivalent

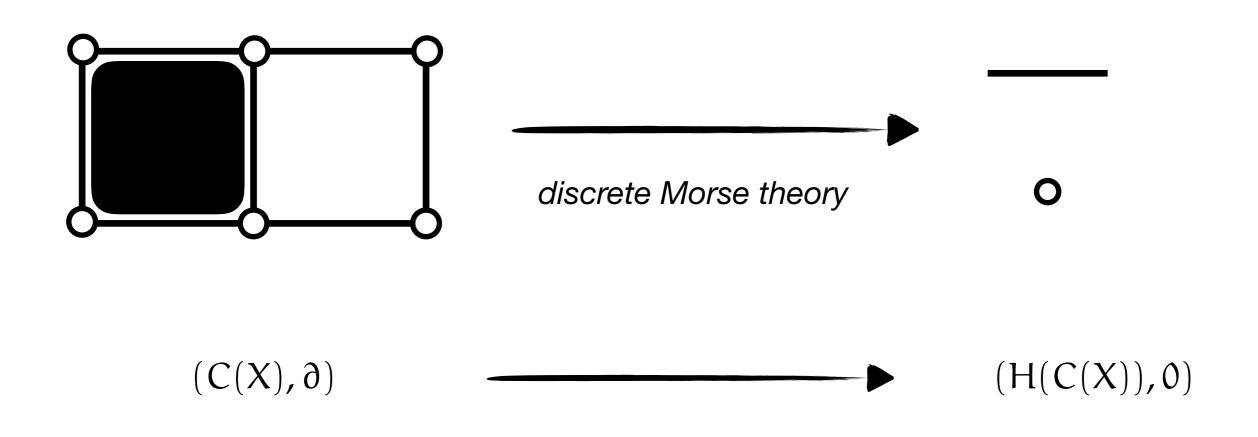
fields

homology is a (simple, minimal) representative of this equivalence class



discrete Morse theory

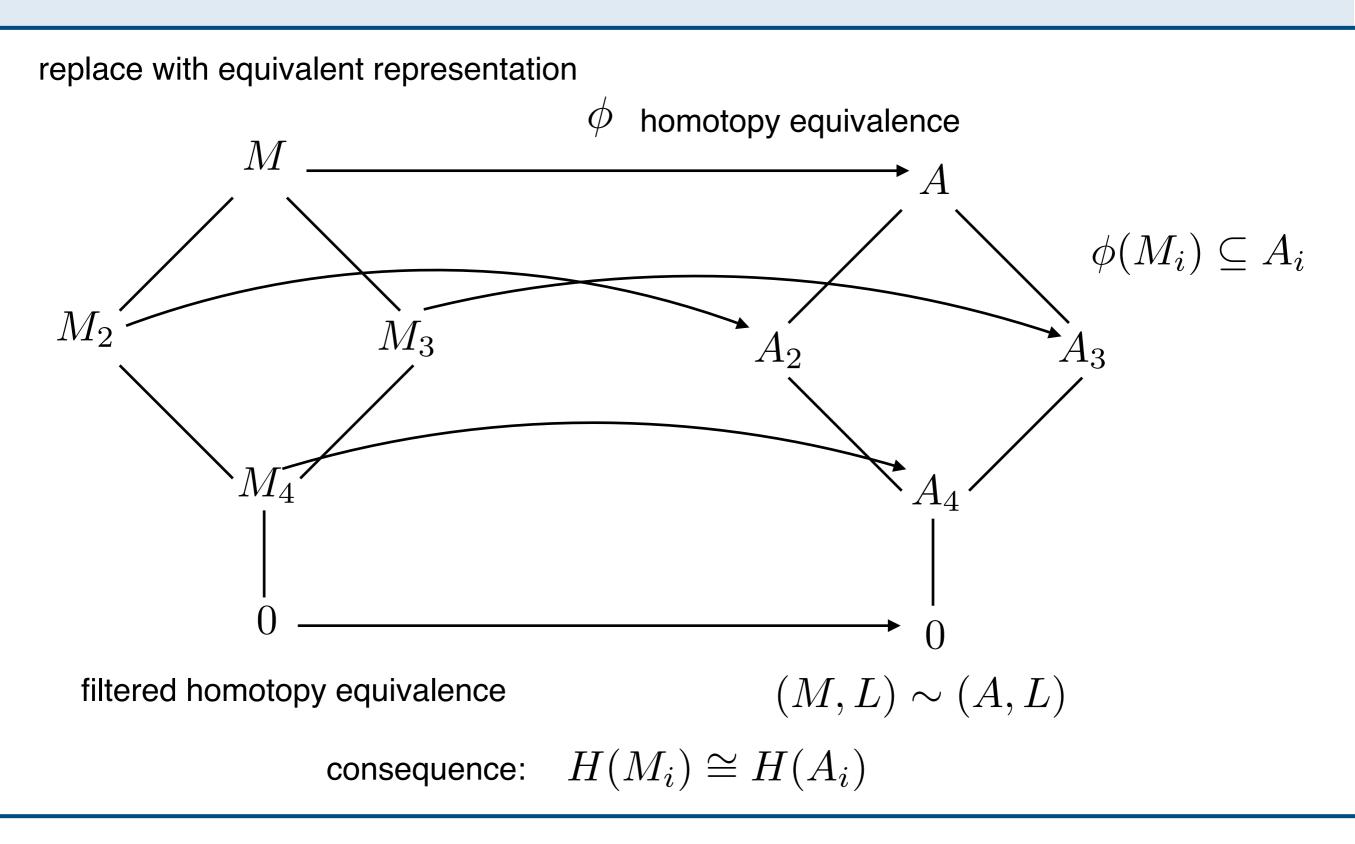
regular CW complex



black box for computing homology

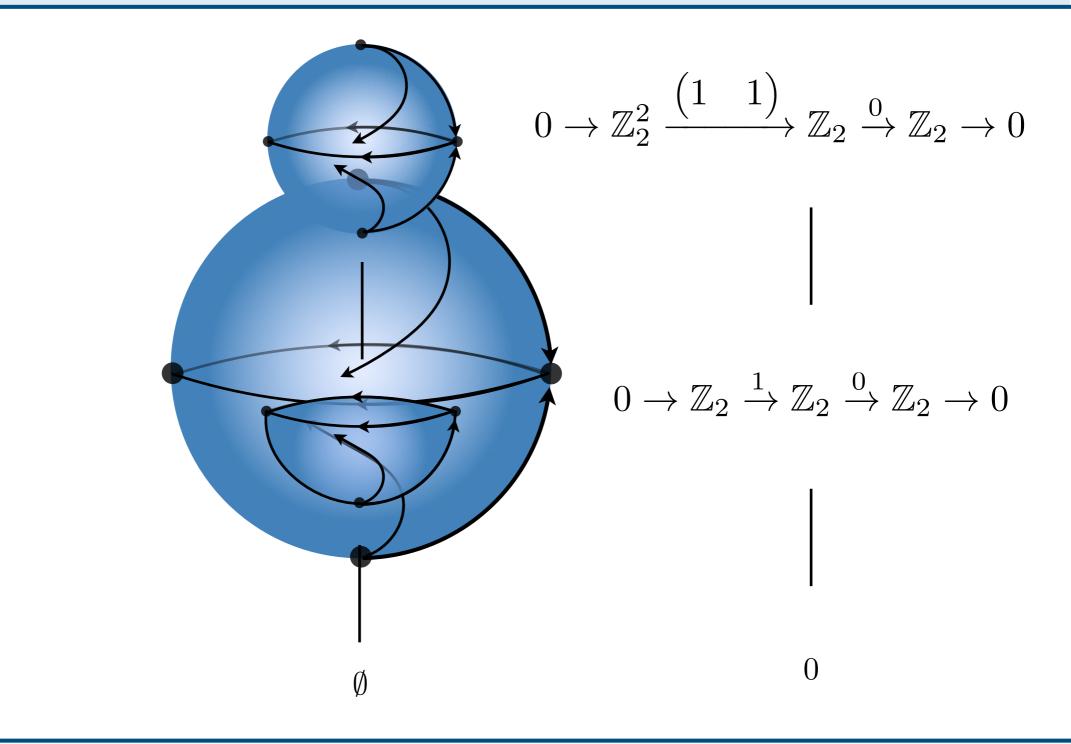
homology as simple representative

equivalent filtered complex



homotopy category for lattice filtered complexes

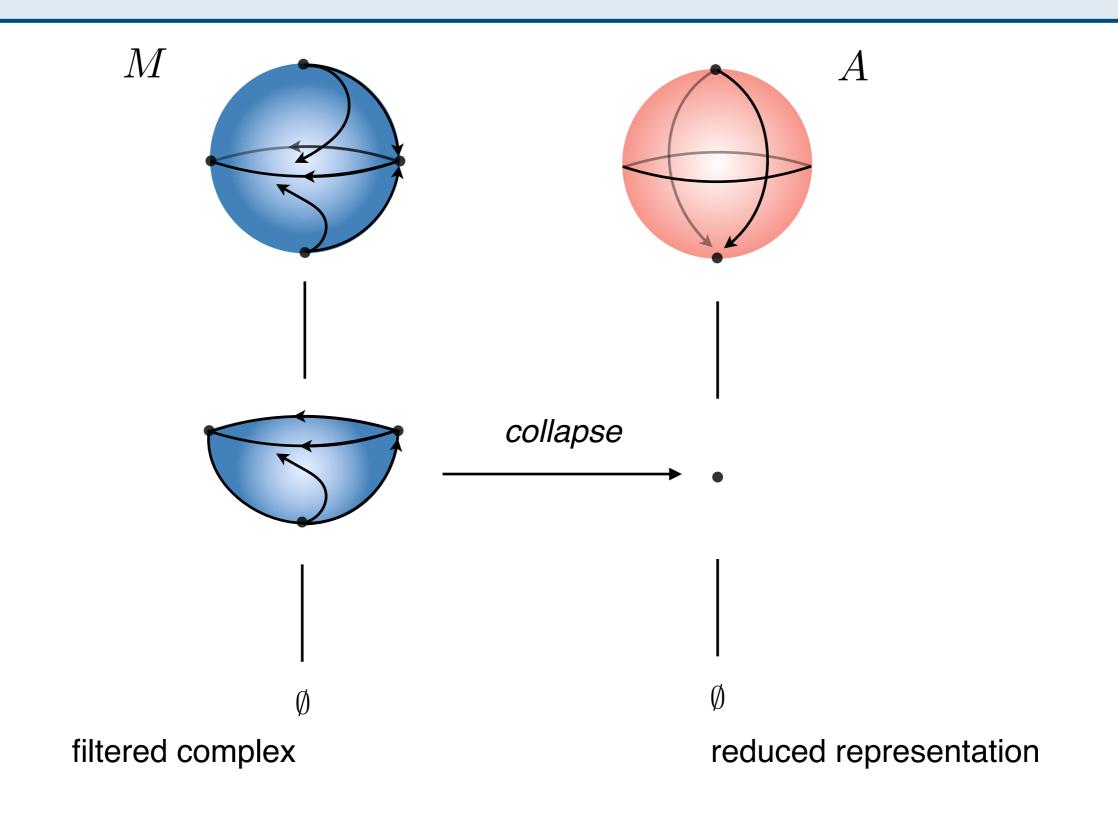
Conley data



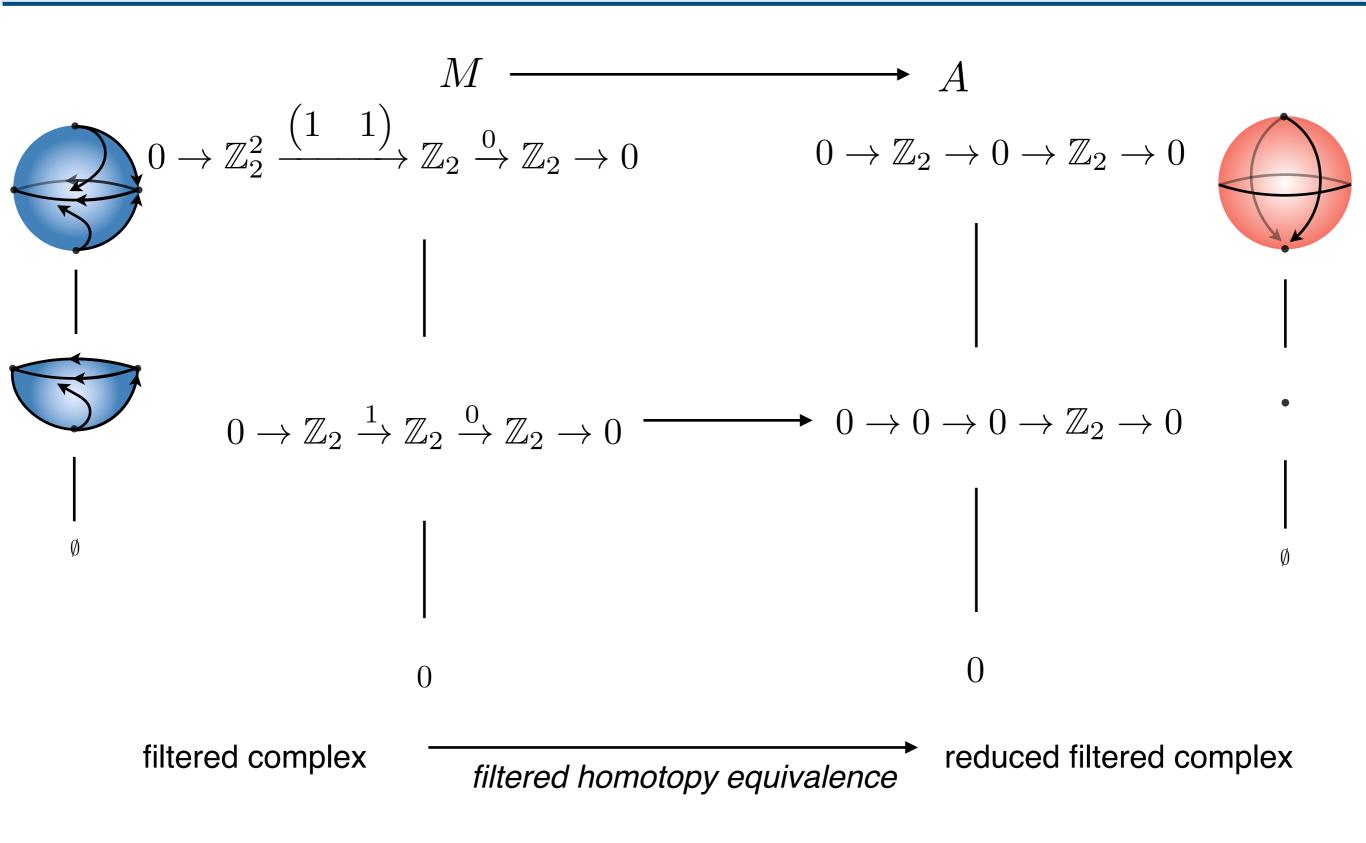
choose a sublattice of lattice of attractors

filtered complex may be large - replace with smaller representation

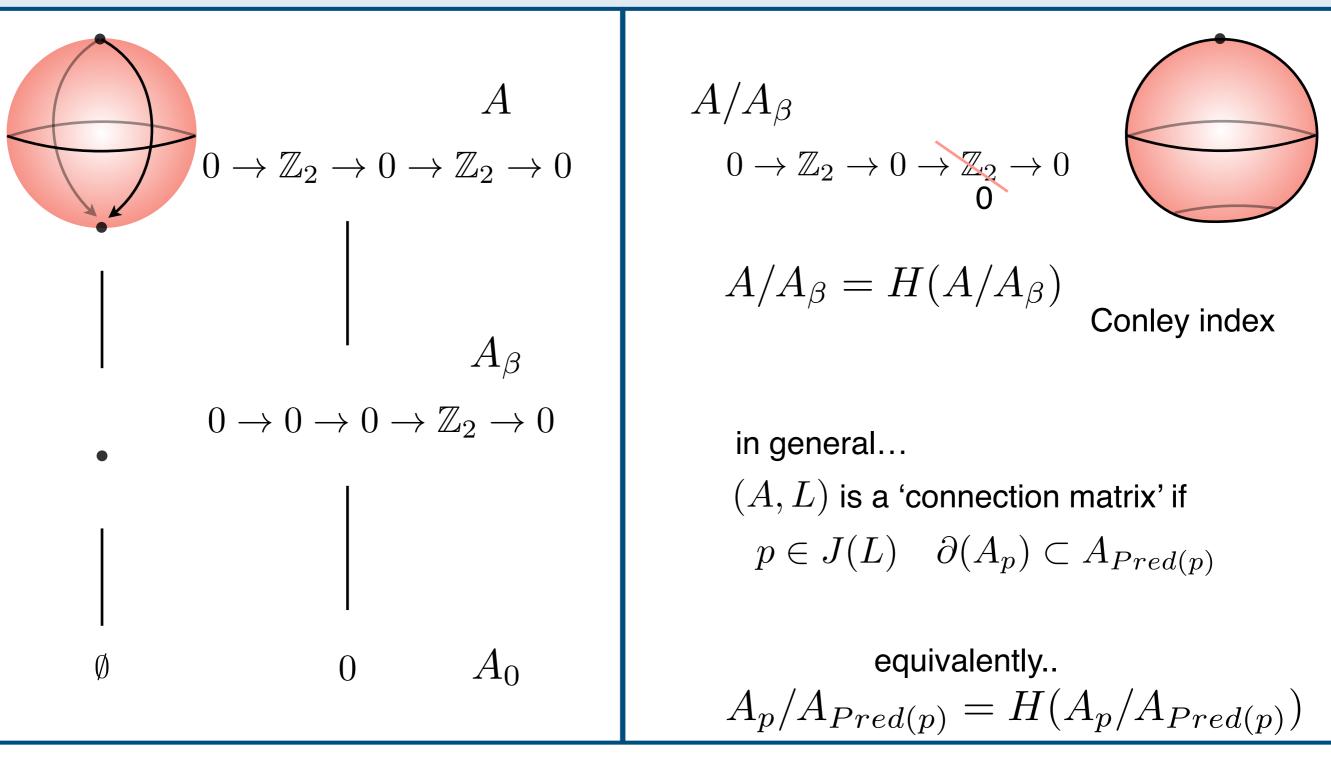
Conley data reduction



Conley data reduction II



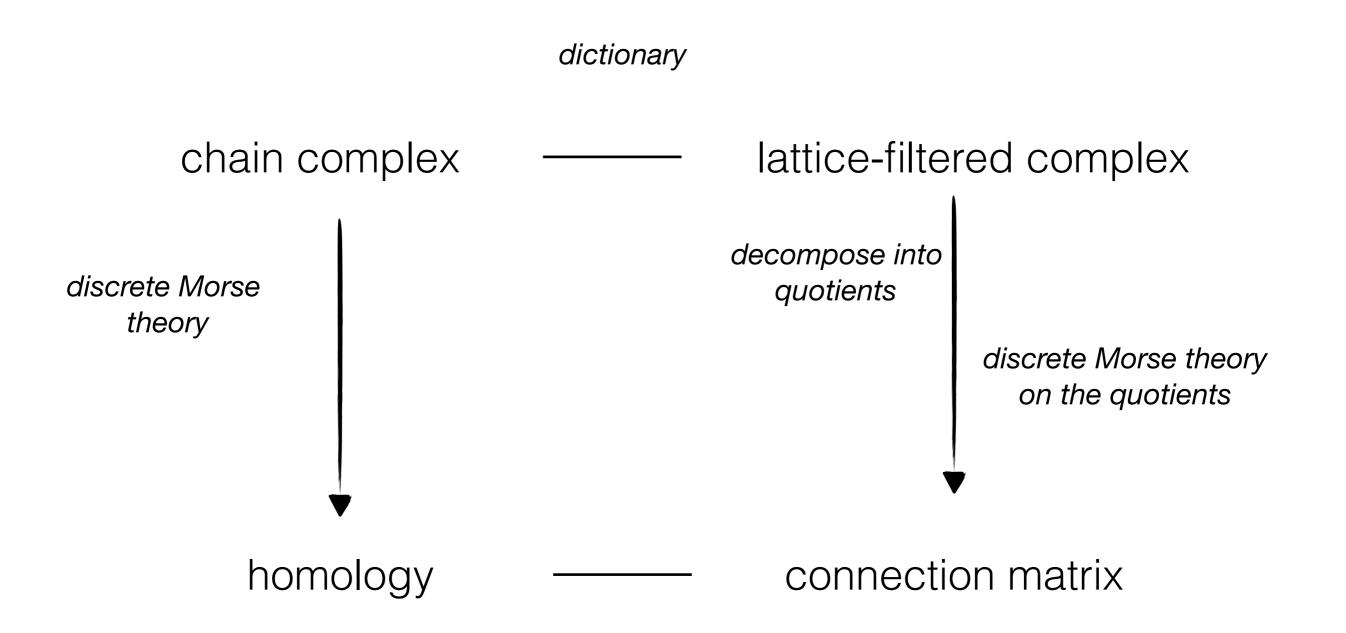
connection matrix



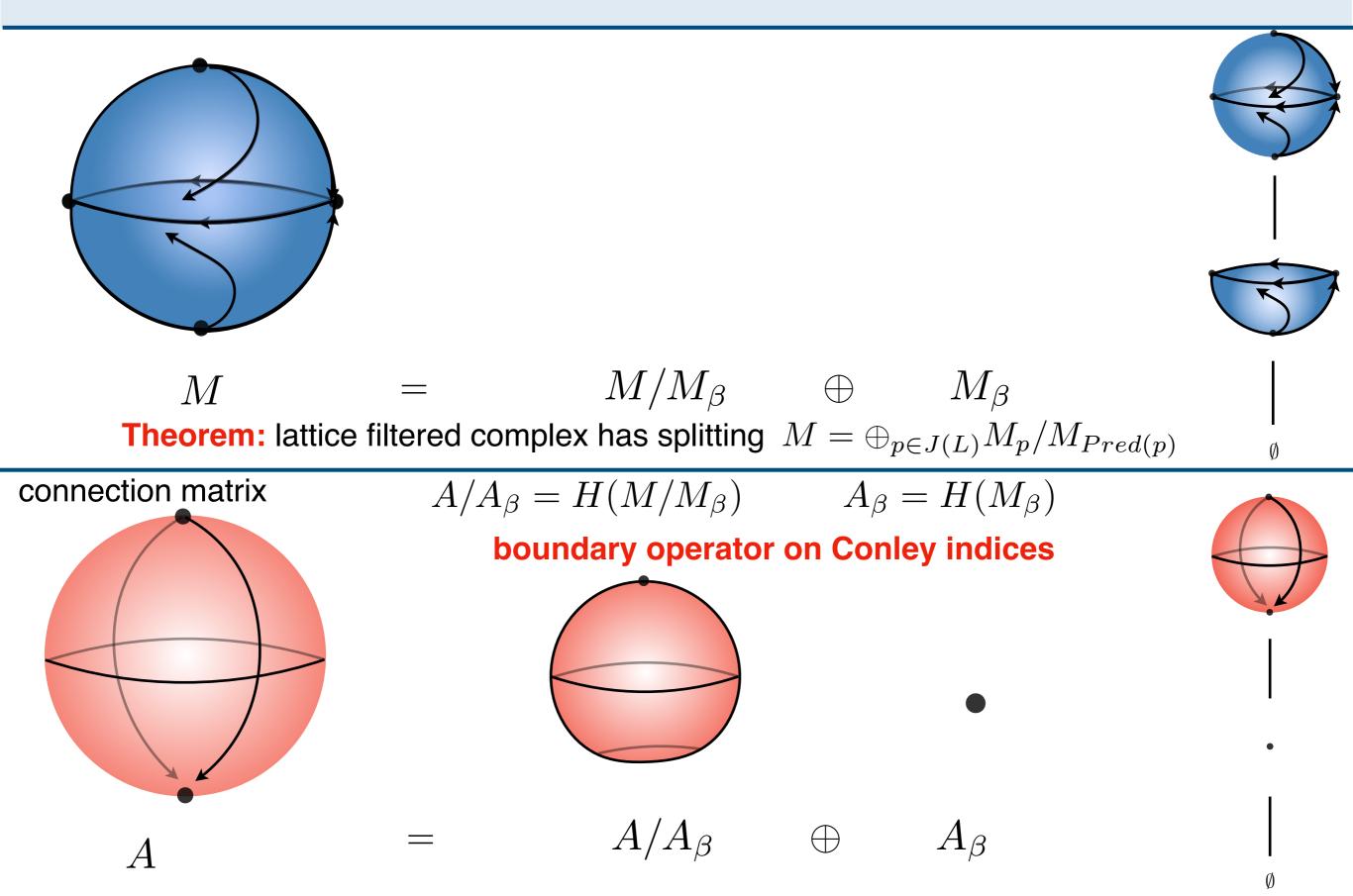
connection matrix is to filtered complex as homology is to chain complex

Theorem: this viewpoint is equivalent to Franzosa's construction

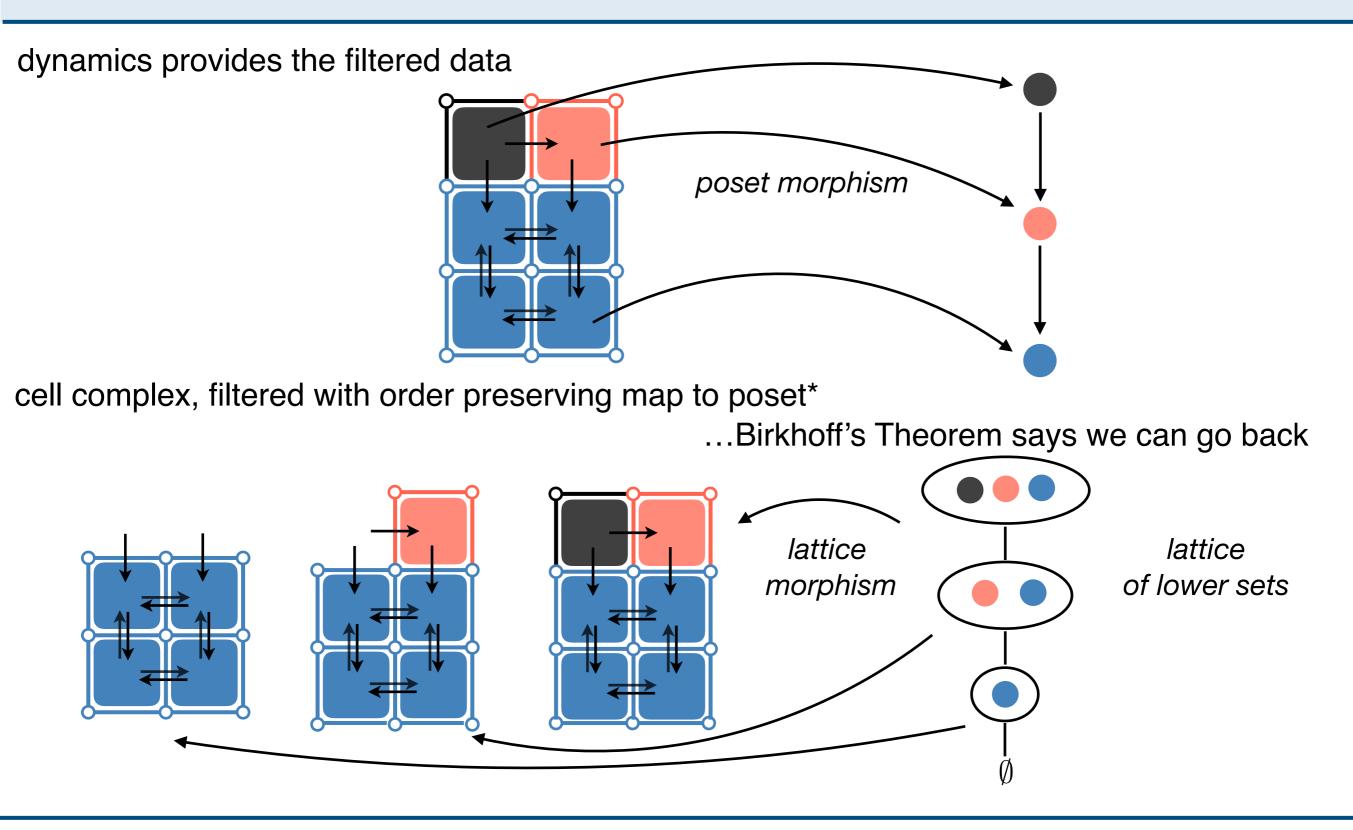
computation



J(L)-decomposition

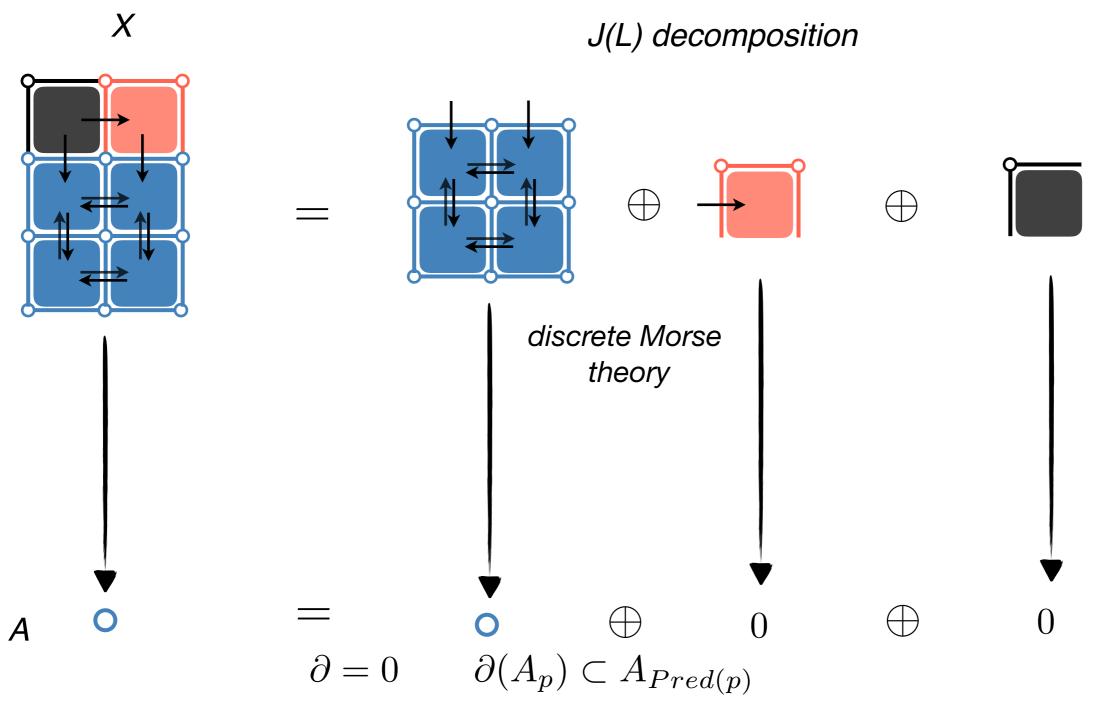


data structure



*equivalently: the pre-image of lower sets form lower sets (continuous in *Alexandroff topology*)

(filtered) discrete Morse theory



Theorem: filtered discrete Morse theory produces a connection matrix

Remark: the boundary operator of the reduced filtered complex is a connection matrix a la Franzosa

thank you for your attention

Collaborators: S. Harker K. Mischaikow

