Computational Connection Matrix Theory

...toward new tools in applied topology

Kelly Spendlove, Rutgers University kelly.spendlove@rutgers.edu

Workshop on Applied Topology, 2019

workflows

Data Structures

graded complexes

X cell complex e.g. Lefschetz, CW (X, \leq) face poset

an order preserving map $(X, \leq) \xrightarrow{\nu} (\mathbb{R}, \leq)$

 \mathbb{R} poset

filters X via pre-images of downsets

 $\nu^{-1}(-\infty, a]$ is a subcomplex of **X** the collection $\{\nu^{-1}(-\infty, a]\}_{a \in \mathbb{R}}$ is a filtration

 $U \subseteq \mathbb{R}$ is a down-set if the following holds: $x \in U$ and $y \leq x$ implies $y \in U$

X cell complex e.g. Lefschetz, CW

(X, \leq) face poset

P finite poset

an order preserving map
$$(X, \leq) \xrightarrow{\nu} (P, \leq)$$

filters X via pre-images of downsets

 $\{\nu^{-1}(U)\}_{U \in O(P)}$ is a lattice of subcomplexes one-critical multifiltration if $P \subset \mathbb{R}^n$

the lattice of down sets O(P) is $O(P) := \{U \subset P : U \text{ is a downset}\} \quad \land := \cap \quad \lor := \cup \quad Birkhoff's Theorem$ X cell complex (Lefschetz, CW)

(X, \leq) face poset

P finite poset

Definition (P-graded cell complex)

X, P, and a poset morphism $\nu\,$ from X to P

$$(X, \leq) \xrightarrow{\nu} (P, \leq)$$

a graded cell complex determines

a P-graded chain complex $(C(X), \partial)$

$$C(\mathsf{X}) = \bigoplus_{p \in \mathsf{P}} C(\nu^{-1}(p))$$

boundary map is **P**-graded

$$\partial_{pq} \neq 0 \implies p \leq q$$

upper triangular wrt P

for a graded chain complex $C(X) = \bigoplus_{p \in P} C(\nu^{-1}(p))$ structure is determined by the fibers of ν

Definition (cyclic P-graded complex)

P-graded complex with cyclic fibers

$$\partial_{pp} = 0$$
 for p in P 'small' objects

i.e. ∂ is strictly upper triangular wrt P

goal: replace graded complex with equivalent cyclic graded complex

goal: homologically-faithful data compression

category GCh(P) of P-graded chain complexes morphisms: P-graded chain maps

homotopy category **GK(P)** of **P**-graded chain complexes localize about **P**-graded chain equivalences

interpretation of connection matrix for data analysis:

a *Conley complex* is a cyclic representative of isomorphism class in **GK(P)** the boundary operator of a Conley complex is a *connection matrix*

moral: homotopy categories for chain-level data compression without loss of homological information

subcategory **GK**₀(**P**) of cyclic **P**-graded complexes

Theorem: over fields, the inclusion functor \Im is full, faithful and essentially surjective (categorical equivalence)

thus there exists an inverse functor $\,\mathfrak C\,$ called a Conley functor

Harker + Mischaikow + S.

moral: homotopy categories for chain-level data compression without loss of homological information

Theorem: For any graded complex the persistent homology groups of $C_{\bullet}(\mathsf{P})$ and $\mathfrak{C}(C_{\bullet}(\mathsf{P}))$ are isomorphic

Remark: When P is a total order computing a Conley complex is the beginning of a spectral sequence-type algorithm (Edelsbrunner & Harer, Bauer et al, ...)

Harker + Mischaikow + S.

computational Conley homology

applications + implementation

https://github.com/shaunharker/pyCHomP

application i:

discrete flows

discrete flows

the simplest discrete flow is a *combinatorial vector field* on simplicial complex \mathcal{K} (Forman)

a combinatorial vector field is a partial matching $\{c_i\} \sqcup \{y_i < x_i\}$ two cells are matched only if one is a codimension-1 face of the other

(no acyclicity requirement)

arrows give the matching cells are critical if they are not matched

face poset and matching give a directed graph \mathcal{F} on complex \mathcal{K} $x_i \rightarrow y_i$ if $y_i < x_i$ are matched or y_i is a codimension-1 face of x_i

 ${\mathcal F}$ partitions ${\mathcal K}$ into poset of strongly connected components ${\sf SC}({\mathcal F})$

 $a \in SC(\mathcal{F})$ iff it is a (maximal) set of vertices such that for any $\xi, \xi' \in a$ there are paths $\xi \to \xi'$ and $\xi' \to \xi$ in \mathcal{F}

discrete flows ii

Remark: computational connection matrix theory generalizes to multi-vectors of Mrozek

application ii:

transversality

topological space is approximated with a cell complex ${\mathcal X}$

continuous dynamics are approximated

with directed graph ${\mathcal F}$ on top-dimensional cells ${\mathcal X}_n$

grade \mathcal{X} via: poset $SC(\mathcal{F})$ strongly connected components of \mathcal{F} *every vertex belongs to strongly connected component* map from top cells to strongly connected components

 φ is the flow generated by $\dot{x}=f(x)$

2. $\mathfrak{C}(\mathcal{X}, \nu)$ is a Conley complex for continuous dynamics φ

Remark: Computations + theorems are valid for any differential equation which is transverse to top cell boundaries in direction indicated

Harker + Mischaikow + S. + Vandervorst

Cell 8 (valuation 4) : {2, 3}

in this example: four different bases

application iii:

Morse theory on braids

Morse theory on braids

Fact: Nontrivial Conley indices imply existence of solutions to PDE

Fact: Nonzero entry in connection matrix between adjacent elements proves existence of connecting orbit

braids i

braids iii

chain data

Connection Matrix Data _____ Boundaries of 0-cells in Conley complex: 0 : set() 1 : set() Boundaries of 1-cells in Conley complex: $2 : \{0, 1\}$ Boundaries of 2-cells in Conley complex: 3 : set() Boundaries of 3-cells in Conley complex: 4 : {3} 5 **:** {3} Boundaries of 4-cells in Conley complex: $6: \{4, 5\}$ 7: {4, 5} 8: {4, 5} 9 : set() Boundaries of 5-cells in Conley complex: $10 : \{8, 9, 6\}$ 11 : {8, 9, 7} $12 : \{9, 6, 7\}$ Boundaries of 6-cells in Conley complex: 13 : set() Boundaries of 7-cells in Conley complex: $14 : \{13\}$ $15 : \{13\}$ 16 : {13} Boundaries of 8-cells in Conley complex: $17 : \{14, 15\}$ $18 : \{16, 14\}$ $19 : \{16, 15\}$

Conley Complex connection matrix

organizes global dynamics Conley index for each node

Conley-Morse Graph

boundaries can be queried from the data structure chain maps to move between data and invariant

thank you for your attention

Collaborators: S. Harker K. Mischaikow R. van der Vorst

Harker, S., Mischaikow, K. and Spendlove, K., 2018. A Computational Framework for the Connection Matrix Theory. *arXiv preprint arXiv:1810.04552*.

