Morse, Conley, and Computation

...toward a computational homological theory of dynamics

Kelly Spendlove, University of Oxford

Computational Math Seminar, 2020

dynamical musings

- a dynamical system engenders topological data
- local data (e.g. equilibria) and global data (attractors)
- topological data are ordered and measured with algebra

Conley-Morse Theory

…if such rough equations are to be of use it is necessary to study them in rough terms. C. Conley, CBMS Monograph (1978)

first, the model of a (Morse-type) gradient system

gradients are model systems: every dynamical system has 'gradient structure' S. Smale, Differentiable dynamical systems, 1967 C. Conley, The gradient structure of a flow I, 1988

-0.5

0.0 x 0.5

Morse indices measure fixed points Morse index quantifies instability dimension of $W^{u}(p)$

 $M_n(p) = \begin{cases} \mathbb{Z}_2 \langle p \rangle, & n = \dim W^u(p) \\ 0, & \text{else} \end{cases}$ Morse indices assemble $M_{\bullet}(f) = \bigoplus_{w \in \mathcal{O}} M_{\bullet}(p)$ $p{\in}crit(f)$ b а С $\mathbb{Z}_2\langle a\rangle \oplus \mathbb{Z}_2\langle b\rangle$ 1) $\mathbb{Z}_2\langle c \rangle$ *boundary operator counts connecting orbits mod 2* 0 $\mathbb{Z}_2\langle d \rangle$ d $\dot{x} = -\nabla f(x)$

Conley's focus: attractors, attracting blocks

Conley theory is a purely topological generalization of Morse theory for general dynamical systems

X compact metric space

dynamics given by continuous flow $\, \varphi : \mathbb{R} \times X \to X \,$

a compact set N is an attracting block if $\varphi(t, N) \subset int(N)$ for all t > 0

Fact: the set of attracting blocks ABlock is bounded distributive lattice

 $\wedge:=\cap\quad \vee:=\cup$

Birkhoff's theorem

L finite distributive lattice

the poset of *join irreducible* elements of L is $J(L) := \{x \in L \setminus \{0_L\} : \text{if } x = A \lor B, \text{ then } x = A \text{ or } x = B\}$ *a join-irreducible has a unique predecessor* $J(L) \ni B \mapsto B \in L$

(P, \leq) poset the lattice of lower sets is $O(P) := \{U \subseteq P : \text{ if } x \in U \text{ and } y \leq x \text{ then } y \in U\}$ $\land := \cap \quad \lor := \cup$

Fact: O, J are contravariant functors

Birkhoff: $O(J(L)) \cong L$ $J(O(P)) \cong P$

Conley-Morse Homology i

the Birkhoff transforms give dual perspective to dynamics

L sublattice of attracting blocks

Conley-Morse Homology ii

to generalize Morse homology

associate minimal complex to isolated invariant sets (Conley index)

L sublattice of attracting blocks

Franzosa, Mischaikow, McCord, Reineck... Conley-Morse homology is a homology theory

Conley-Morse Homology iii

to generalize Morse homology

Conley indices as input to chain complex

```
what is the boundary operator?
```

for L sublattice of attracting blocks and J(L) poset of Morse sets

Theorem (Franzosa, Robbin & Salamon): There exists a strictly upper triangular - wrt (J(L), \leq) - boundary operator

computational Conley theory

approximation + data structures

topological spaces are approximated

with cell complexes (cubical, simplicial, polyhedral)

$X \subset \mathbb{R}^2$

a chain complex $(C_{\bullet}(\mathcal{X}), \partial)$

if the attracting blocks are representable by subcomplexes then we may compute algebraic invariants, e.g. homology X cell complex

B

Α

representation of attracting blocks

inclusion is a lattice homomorphism

$$_ \longrightarrow Sub(X)$$

L sublattice of attracting blocks

Sub(X) lattice of subcomplexes

the Conley indices can be computed for both attractors...

Betti numbers

 $CH_{\bullet}(A) = H_{\bullet}(A) = (1, 1, 0)$ $CH_{\bullet}(B) = H_{\bullet}(B) = (1, 0, 0)$

... and the invariant sets (Morse sets)

 $CH_{\bullet}(a) = H_{\bullet}(A, \emptyset) = (1, 1, 0)$ $CH_{\bullet}(b) = H_{\bullet}(B, A) = (0, 0, 1)$

()

What is the data structure for Conley theory?

Definition (P-graded cell complex)

X, P, and a poset morphism ν from X to P

$$(\mathsf{X},\leq) \xrightarrow{\mathcal{V}} (\mathsf{P},\leq)$$

dynamical information

a graded cell complex determines a P-graded chain complex $(C(X), \partial)$ $C(X) = \bigoplus_{p \in P} C(\nu^{-1}(p))$

boundary map is P-graded

 $\partial_{pq} \neq 0 \implies p \leq q$

upper triangular wrt P

topological approximation

Axiomization (Connection matrix)

Definition (strict P-graded complex)

P-graded complex with minimal fibers

$$\partial_{pp} = 0$$
 for p in P 'small' objects

i.e. ∂ is strictly upper triangular wrt **P**

goal: replace graded complex with equivalent strict graded complex

interpretation of connection matrix for computation:

a *Conley complex* is a strict representative of graded chain equivalence class the boundary operator of a Conley complex is a *connection matrix*

Theorem: there is a functor \mathfrak{C} taking a graded complex to a Conley complex

Harker + Mischaikow + S.

computational Conley homology

applications + implementation

application i:

state transition models

topological spaces are approximated with cell complexes

continuous dynamics are approximated

with directed graph \mathcal{F} on top cells \mathcal{X}^+

lattice of forward invariant sets: $\mathsf{Invset}^+(\mathcal{F}) := \{ U \subset \mathcal{X}^+ : \mathcal{F}(U) \subset U \}$

poset of strongly connected components:

$$\mathsf{SC}(\mathcal{F}) := \mathsf{J}(\mathsf{Invset}^+(\mathcal{F}))$$

maximal recurrent sets of graph

poset $SC(\mathcal{F})$ strongly connected components of \mathcal{F}

$$\begin{array}{c} \mathcal{X}^+ \longrightarrow \mathsf{SC}(\mathcal{F}) \\ \xi \mapsto [\xi] \end{array}$$

Theorem: if the graph is a state transition model then there is an extension ν

- 1. $A = \{\nu^{-1}(a)\}_{a \in O(SC(\mathcal{F}))}$ is a lattice of attracting blocks for φ
- **2.** $\mathfrak{C}(\mathcal{X}, \nu)$ is a Conley complex for φ

Remark: Computations + theorems are valid for any differential equation which is transverse to top cell boundaries in direction indicated

Harker + Mischaikow + S. + Vandervorst

connection matrix as 'matrix'

connection matrix as data structure

application ii:

Morse theory on spaces of braids

instantiation: dynamics on braids $u_t = u_{xx} + f(x, u, u_x)$

parabolic dynamics decreases intersections

proof:

$$\frac{\partial}{\partial t}(u^1(x,t) - u^2(x,t)) = u^1_{xx} + f(x,u^1,0) - u^2_{xx} - f(x,u^2,0)$$
$$= u^1_{xx} - u^2_{xx} > 0$$

van den Berg, Ghrist, van der Vorst, Inventiones Math. 2003

functions lift to braids

dynamics on braid classes

van den Berg, Ghrist, van der Vorst, Inventiones Math. 2003

functions lift to braids

Morse theory on braids

Fact: Nontrivial Conley indices imply existence of solutions to PDE

Fact: Nonzero entry in connection matrix between adjacent elements proves existence of connecting orbit

braids i

braids iii

chain data

Connection Matrix Data _____ Boundaries of 0-cells in Conley complex: 0 : set() 1 : set() Boundaries of 1-cells in Conley complex: $2 : \{0, 1\}$ Boundaries of 2-cells in Conley complex: 3 : set() Boundaries of 3-cells in Conley complex: 4 : {3} 5 **:** {3} Boundaries of 4-cells in Conley complex: $6: \{4, 5\}$ 7: {4, 5} 8: {4, 5} 9 : set() Boundaries of 5-cells in Conley complex: $10 : \{8, 9, 6\}$ 11 : {8, 9, 7} $12 : \{9, 6, 7\}$ Boundaries of 6-cells in Conley complex: 13 : set() Boundaries of 7-cells in Conley complex: $14 : \{13\}$ $15 : \{13\}$ 16 : {13} Boundaries of 8-cells in Conley complex: $17 : \{14, 15\}$ $18 : \{16, 14\}$ $19 : \{16, 15\}$

Conley Complex connection matrix

organizes global dynamics Conley index for each node

Conley-Morse Graph

boundaries can be queried from the data structure chain maps to move cycles back and forth

5-fold cover

Fig. 7. The lifted skeleton of Example 1 with one free strand

from van den Berg, Ghrist, van der Vorst, Inventiones Math. 2003

Theorem (van den Berg, Ghrist, Vandervorst) For an n-fold cover of this braid there are at least $3^n - 2$ nontrivial Conley indices

Compare this estimate to our computational result:

Remark: the 5-fold cover gives a 10-dimensional graded complex containing over 60 billion cells

application iii:

database approach to dynamics

look at all possible five dimensional braids on three strands

i.e. all braids of this type (positive crossings)

compute database of all Conley complexes

each braid gives a graded cubical complex with 100,000 cells

 $|S_3 \times S_3 \times S_3 \times S_3 \times S_3| = 7776$

database of 7776 Conley complexes

database of all Conley complexes for 5-D braids on 3 strands

query the database:

'how many braids have precisely n nontrivial Conley indices?'

query the database:

'what are the Conley-Morse graphs that have 11 nontrivial indices?'

query the database:

'what are the braids that produce 11 nontrivial indices?'

the braids are translates of one of these two (dual) braids

query the database:

'how many braids produce a Conley index that looks like a periodic orbit?'

i.e. contain one or more of the following indices

query the database:

'what are the Conley-Morse graphs two or more periodic-type indices?'

all of the 263 are of the following two forms:

upshot: we can examine not only high-dimensional braids, but also ask questions about dynamics in the space of braids

thank you for your attention

Collaborators: S. Harker K. Mischaikow R. van der Vorst

