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dynamical systems

on butterflies in your simulation,
can proverbial straws be more catastrophic than plastic ones”
why it's Impossible to predict the weather.



given a metric space X ‘'Dhase space’

(for the purposes of this talk) a IS a continuous map
f: X—=-X
dynamical systems often include

f: XxA—=>X

typical guestions one may ask of a dynamical system include:

for a particular initial condition, what happens in the long run?
how does the long run behavior depend upon the initial conditions?
...on the parameters within the model?
are there fixed points? i.e. solutions to f(z) ==
are there periodic orbits? i.e. solutions to f"(z) ==
are there multiple attractors?



dynamics can be simple (gradient-like)

& ==V f(z)

f: X —>R
Tnt1 = Tp — YV f(2n)
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dynamics: equilibria + heteroclinic orbits

Lee, J. D., et al. (2019). First-order methods almost always avoid strict saddle points. Mathematical programming.



dynamics can be complex...
periodic orbits
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vector field

dynamics can be complex

two loss functions (zero sum game)
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dynamics can be complex |

f(z)
1.0

f:10,1] — [0,1] f(z) =4x(1 — x) e
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f:10,1] — [0,1]

Logistic map

deviations in
the 15th decimal

dynamics can be complex |

f(z)

f(z) =4x(1 — x) e
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dynamics can be complex |
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dynamics can be complex |
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dynamics can be complex |
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deviation is now on the

| ...Sets off a tornado in Texas.
order of the entire phase space



dynamics can be complex |l

Tnt1 = fr(@) = ren(l —an)
T Is a model parameter
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dynamics can be complex Il

Tnt1 = fr(@) = ren(l —an)
T Is a model parameter

1.0

0.8

x
0.4
stable —/

fixed point

0.2
0.0 N
2.4 2.6 2.8

bifurcation to stable
period two orbit

‘bifurcation diagram’

plotted are values visited asymptotically from almost all initial conditions



dynamics can be complex Il

Tnt1 = fr(@) = ren(l —an)

T Is a model parameter
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oifurcations: a single straw can break the camel’s back
that is, a small perturbation in parameters can drastically change dynamics



a thought experiment

... that the logistic map is the perfect model
(say, for the onset of turbulence), and

... that one can perform a perfect numerical
simulation...

...with high probability, we will still draw the wrong
conclusions.



suppose an experimentalist can measure rto within one
decimal place
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any computation probably will suggest the wrong
dynamics



Conley’s theory

decomposition + reconstruction

‘...If such rough equations are to be of use it is necessary to study them in rough terms.’
C. Conley



decomposition

Morse theory as a rapid prototype,
Morse graphs for your dynamical system on a napkin,
how to stop worrying and learn to be robust to perturbations.



returning to simple (Morse-theoretic) dynamics

dynamics: equilibria + heteroclinic orbits

global dynamics are organized by a graph

Morse graph

sources
saddles
' \4 A / ' fixed points become vertices
sinks edge set satisfies the property:

if there is an orbit from pto q,
then there is a path from p to q in the Morse graph



(isolating) neighborhoods instead of fixed points

a choice of neighborhoods is a choice of... invariant dynamics must be
resolution |solated within neighborhood
- Inv(N, f) C int(V)
| N
Morse graph e \
recurrent N | /

non-recurrent ' '
(gradient-like) \ \V

recurrent ( N/

¢\¢/¢

at this resolution the

decomposition remains the same if there is an orbit from Nto N,
then there is a path from Nto N in the Morse graph

neighborhoods become vertices
edge set satisfies the property:



a choice of neighborhoods is a choice of...

resolution
invariant dynamics must be

~ isolated within neighborhood

ChOOSing Inv(N, f) C int(N)

different neighborhoods

\

the graph is robust with respect to
perturbation of the system



decompose dynamics over a set of parameters

unstable fixed point (origin) 1.0
0.8
06—\
non-recurrent dynamics x 4
| (gradient-like) 0.4
0.2
attractor 11 T \
0 e e e B B B B S S
24 26 28 30 32 34 36 38 40
Morse graph r

a Morse graph ...
* is robust (valid) over the set of parameters
* compact representation of global dynamics
e capable of capturing complex dynamics



reconstruction

invariant sets leave algebraic topological footprints,
Conley-Morse graphs = Morse graphs + Conley indices,
a one-dimensional zoo.



what is...homology”

IS a mapping (functor)
from pairs of topological spaces and continuous maps
to vector spaces and linear maps

topology
pair of topological spaces continuous maps
Sl
id
—_—
point  ® ¢ ¢
H,(-)
algebra
pair of vector spaces linear maps
: id
(Ho(S*, {-}), Hi(S",{})) = (0,F) H.(id) = (0 —» 0,F — F)
dimension O dimension 1

one dimensional "hole’



what is...a Conley index”

» stable algebraic-topological invariant of invariant sets
* for continuous-time flows or discrete-time maps

e coarsely guantifies unstable dynamics

one-dimensional saddle

IS represented by the tuple
v [ ]
. : . (0,1id, 0)

00 — 4

dimension O dimension 1 dimension 2

roughly: one-dimensional
f( (CE) ) — (2 9) (CIJ) — <%£IZ> unstable dynamics
Y 0 3 Y 5y



Logistic redux

r— 975 f(zx) =2.752(1 — x)
fff’)
1
1.0
0.8 . f(x)
0.6- 6—
.
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we are here unstable fixed point

(origin)

N

stable fixed point -



reconstruction via Conley index

local picture near + =0 (pointed) quotient space induced self-map

f(x) (N/L,|L]) Syt (N/L,[L]) = (N/L, |L])

9(37) — & o
o> o
'\ o
| IS the associated linear map
exit set L
isolating (fN,L)e: He(N/L,|L]) — Ho(N/L,[L])

neighborhood N



reconstruction via Conley index

local picture near x =0 (pointed) quotient space induced self-map

4

f(z)
g(z) =
\
@
\ IS the associated linear map

exit set L
isolating (fn.L)e: He(N/L,|L|) — He(N/L, L)

neighborhood N

(N/L,[L]) fno: (N/L,[L]) = (N/L, |L])

doing the computation...

Ho(N/L,|L|) = (Ho(N/L,[L]), Hi(N/ L, |L]))

we write the Conley index as (0, 0)
= (0,0) /
(fN,L). =(0—0,0—-0) - (caveat: shift equivalence class)



reconstruction via Conley index |

local picture

near attracting fixed point (pointed) quotient space induced self-map
(N/L, [L]) fno: (N/L,|L}) = (N/L, L])
g(z) =
f(z)
S —> e —

IS the associated linear map
(fN,L)03 H,(N/L, [L]) — H.(N/L, [L])

[ <
» <

f no exit set

Isolating
neighborhood N



reconstruction via Conley index |

local picture

near attracting fixed point (pointed) quotient space induced self-map
(N/L, [L]) fno: (N/L,|L}) = (N/L, L])
g(z) =
f(z)
S —> e —

IS the associated linear map
(fN,L)03 H,(N/L, [L]) — H.(N/L, [L])

> @ doing the computation...

/ no exit set Ho(N/L, [L]) = (F, 02
isolating (fnp)e = (F —F,0—0)
neighborhood N we write the Conley index as (id, 0)



characterize recurrent dynamics over a set of parameters

Theorem: If Nis an isolating neighborhood for each rin a path connected set, then the
Conley index associated to N is the same for all f»

l.e., robust with respect to parameters

Conley-Morse graph = Morse graph + Conley indices

1.0

unstable fixed point (origin)

(070) 0.8

06+ g

l gradient-like dynamics xo i
A

0.2

(id, 0)

attractor

0 0 e e s S B B B B B I A

24 26 28 3.0 3.r2 34 36 38 4.0

Conley-Morse graph



a zoo of Conley indices

f(z) f(z) f(z)
g(z) == g(z) == g(z) ==
T
-, - . = .\_./.
empty invariant set unstable fixed point stable period 2 orbit
® L

~

Ho(N/L,[L]) = (F&F,0)

e (0,0) (0. (3 o)0



iINnterlude

combinatorial dynamics



combinatorial dynamics

vertices = states of the system
directed edges = possible dynamics

graphs can be manipulated by a computer



decomposition

recurrent vs. non-recurrent

A
o

cyclic strongly connected component:
maximal sets of vertices in which any two vertices are connected with a directed path, and
contains at least one cycle



decomposition |

g
/AN R —
b

e

(combinatorial) Morse graph

cyclic poset of cyclic
strongly connected path components strongly connected components



combinatorialization

how to go from wiggles to bits and back again

‘Our physical world is wiggly... but in nature wiggles don’t come ‘pre-bitted’. If you want to
eat a chicken you have to cut it up — it doesn’t come bitten.’
A. Watts



step 1: discretize phase space
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f(x) =2.752(1 — x)
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step 2: discretize dynamics
directed graph

grid elements are vertices

o>

edge set obeys the property:

fl&)NE #0D = & — &

such a graph is called an

of f



step 1: discretize phase space step 2: discretize dynamics

(grid on phase space)
directed graph
f(x) =2.752(1 — x)

f(@) - -
X grid elements are vertices
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edge set obeys the property:
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such a graph is called an of f



computational recipe

1) f(x) =2.75x(1 — x)

cyclic strongly connected components

®|o
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compute Conley indices

ey ¥
computational homology

(id, 0)

Morse graph Conley-Morse graph

Morse graph

Theorem: Conley-Morse graphs arising from outer approximations are valid for the

underlying system f



application...
the global dynamics of games

is there more to a game than its Nash equilibria?
a long evening with a friend and two pennies,
how complex is learning to play a game?



‘matching pennies’-style game:
two players (A and B) simultaneously put down a penny, either heads or tails up;
If same face then player A wins, if opposite faces player B wins

payoff matrices
H T H T

A= H{ 1 0 B= H{ 0 1
'\ 0 1 '\ 1 0

A plays Hand B plays T, then A’s payoff is Avr=0 and B’s is Bru=1

player A strategy: choose H with probability x1, choose T with probability 2 = 1 — 2
player B strategy: choose H with probability ¥1, choose T with probability y2 =1 — 11

a learning dynamic governs how player should update their strategy

Yi (f) l—a'e;‘f)’(Ba:)i

x;(t+1)= :
i( ) >, (£) =P B);

yi(t +1) =

i (f) 1—a B(Ay).
Zj £ g (f) l—apB(AY);

‘Experience Weighted Attraction’

Camerer, C., et al. (1999). Experience-weighted attraction learning in normal form games. Econometrica.



computational recipe for Conley-Morse theory

1. discretize phase space at chosen scale

2. build directed graph by outer
approximating map

O

player B o

3. find cyclic strongly connected
components (in color)

A
—

o

4. compute Conley-Morse graph
o ' player A 05 1

phase space X = [0, 1] x [0, 1]
a=0.18,8 =2



Conley index
1 ‘looks like’

trivial invariant set

non-recurrent

\dynamics
fixed point;
0.5 Nash equilibrium 2d unstable
@
CT) non-recurrent
> dynamics
©
Q.

A
—

@id' i@ stable invariant circle
/

Conley-Morse graph

o

L1

0 player A 05 1

Given this method of learning the game,

phase space X = [0, 1] x [0, 1] our two players will not converge to the Nash equilibrium!

a=0.18,5 = \/ﬁ Instead, they cycle around the Nash equilibrium
(groundhog day scenario!).



from zero to one

®’

0 : (id, id, 0)



returning to our dynamical questions...

is there a fixed point?
Is there a periodic orbit?
are there multiple attractors?
how does behavior depend on the parameters within the model?



thank you for your attention

collaborators:
Georgios Piliouras, SUTD
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