
MATH 351: INTRODUCTION TO ABSTRACT ALGEBRA
SUMMER 2017, RUTGERS UNIVERSITY

KELLY SPENDLOVE

On Algebra

Algebra is the offer made by the devil to the mathematician. The devil says: I will
give you this powerful machine, it will answer any question you like. All you need
to do is give me your soul: give up geometry and you will have this marvelous
machine.

– Sir Michael Atiyah1

‘Abstract Algebra’ is a study of structure and ‘arithmetic systems’, e.g. groups, rings,
fields. Algebra grew out of arithmetic - abstract algebra will axiomatize basic concepts
you’ve studied before (in Z, Zn) and we will study their structure.

Here is a prototype of a structure/decomposition theorem (we will see this again at the
end of Ch. 1)

Theorem 0.1 (Fundamental Theorem of Arithmetic). Let n ∈ Z with n 6= 0,±1. Then n is
a product of primes, i.e.

n = p1p2 · · ·pn
for pi prime and this factorization is unique up to reordering

The key to this class will be working through as many problems as possible. It is crucial
to read the book. You should understand every proof in the book.

For the most part these notes will follow Abstract Algebra, An Introduction [4], T. Hunger-
ford (3rd edition), colloquially known as ‘Baby Hungerford’. (‘Hungerford’ typically
refers to his book Algebra in the Graduate Text in Mathematics series).

Baby Hungerford (B.H.) is sometimes considered ‘wordy’, but all of those words assem-
ble into a book that is cogent. These notes will likely not be as cogent and may suffer
under various idiosyncrasies. However, they will draw inspiration from other classic
algebra texts such as Hungerford, Dummit and Foote, Jacobson’s Basic Algebra I and M.
Artin’s Algebra.

Notable about B.H. is that it is unorthodox in pedagogy, viz. introducing rings before
groups. These notes will follow this precedent, though perhaps of interest to note is that
the classical treatment is groups→ rings→ fields (e.g. Hungerford’s GTM Algebra).

1Mathematics in the 20th Century. Bulletin of the London Mathematical Society. 2002. Recommended reading
(15 pages).
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1. Chapter 1: Arithmetic in Z

. . . for a student the content of a mathematical theory is never larger than the set
of examples that are thoroughly understood.

– Vladimir Arnol’d2

Two good models for many ideas of abstract algebra are the integers

Z = {0,±1,±2, . . .}
and ‘the integers modulo n’ denoted Zn

Remark 1.1. What is a ‘model’? We can see this word all over algebra textbooks. This is a loaded
term. What is meant by ‘model’ is a specific instantiation of an idea - one that you keep sitting
around in your head. When you learn new/abstract concepts about groups, rings, etc, you apply
them to the model. That is a good way to get an intuition for how the new/abstract concept works.

Page ‘xvi’ of B.H. has a thematic table of contents. The topics of this course are primes
and factorization/decomposition, congruence, quotients and structure. We will study
these first in Z and Zn and then abstract to rings and groups. Chapters 1 and 2 of
our book are mostly a review of these concepts. It is important to work with the con-
crete examples of these sections in order to develop a good intuition for the upcoming
abstraction.

Remark 1.2. What does it mean ‘to abstract’? It is often the case that instances of ideas are
first found in applications or are used implicitly. The idea is then recognized as important or
interesting in its own right. Then an ‘abstract definition’ is made for the idea. This ‘abstract
definition’ should capture and isolate what is unique/characteristic of the idea.

Z, Zn work as concrete models for rings and groups. The archetypical example of a
ring are the polynomials. For groups: symmetries of a shape3. A conceptual outline to
keep in mind for the course may be as follows:

Group/ring properties of Z, Zn

--qqRings // Groups

Ex: Polynomials
**

Ex: Symmetries
ttStructure and Isomorphism Theorems

1.1. Division Algorithm.

Proposition 1.3 (Well-Ordering Principle). Every nonempty subset of the set of nonnegative
integers contains a smallest element.

This is a set theoretic axiom.4 This will be the workhorse of many of the proofs to come
in this chapter.

2Arnol’d, V. I. (2013). Lectures on partial differential equations. Springer Science & Business Media.
3See S. Strogatz’s article Group Think: https://opinionator.blogs.nytimes.com/2010/05/02/

group-think/. Strogatz is a math professor at Cornell, and one of the best mathematical expositors.
4See https://en.wikipedia.org/wiki/Well-ordering principle

https://opinionator.blogs.nytimes.com/2010/05/02/group-think/
https://opinionator.blogs.nytimes.com/2010/05/02/group-think/
https://en.wikipedia.org/wiki/Well-ordering_principle
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Theorem 1.4 (Division Algorithm). Let a,b ∈ Z be integers with b > 0. Then there exists
unique integers q and r such that

a = bq+ r and 0 6 r < b

Remark 1.5. We will apply the well-ordering principle. To set this up, we need a set of nonnega-
tive integers. This proof is an archetypical application of the well-ordering principle!! This proof
technique will be used over and over again!

Proof. Let a,b ∈ Z be integers with b > 0. Let

S = {a− bx : x ∈ Z and a− bx > 0}

Step 1) Show that S is nonempty.
We must find a value for x such that a− bx > 0. What x can we choose? How about
x = −|a|? Then check a+ b|a| > 0

Step 2) Find q, r such that a = bq+ r and r > 0.
By the well-ordering principle S must contain a smallest element, call it r. Then r =
a− bq for some q ∈ Z.

Step 3) Show that 0 6 r < b.
We have that 0 6 r by defn of S. We will use a proof by contradiction to show that
r < b. Suppose that r > b. Then

0 6 r− b = (a− bq) − b = a− b(q+ 1)

The right hand side is an element of S. Since b > 0 we have a− b(q+ 1) < a− bq = r.
This contradicts our choice of r.

Step 4) Show that r,q are unique. Suppose

a = bq1 + r1 a = bq2 + r2

with
0 6 r1 < b 0 6 r2 < b

We can multiply 0 6 r1 < b by −1 to get −b < −r1 6 0. Adding these two equations
we have −b < r2 − r1 < b.

We have bq1 + r1 = a = bq2 + r2. Rearranging, we have r2 − r1 = b(q1 − q2)
Therefore −b < b(q1 − q2) < b. Implying −1 < q1 − q2 < 1. Since q1 − q2 is an integer,

it is forced to be zero. �

Remark 1.6. Is it important that b > 0 as a hypothesis of the theorem? See Exercise 11 in 1.1.

Remark 1.7. Why is 0 6 r < b important? If we do not specify this, then q, r need not be
unique!

Remark 1.8. The division algorithm says something about the structure of Z. This says some-
thing about how a breaks apart in terms of b: a is a multiple of b plus some remainder

1.2. Divisibility. An important case of division occurs when for

a = bq+ r

we have remainder r = 0.
Let a,b ∈ Z with b 6= 0. If a = bc for some c ∈ Z then b is said to divide a, written as
b|a. If b does not divide a, then we write b - a.

An important concept concerning divisors is the following:
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Definition 1.9 (Greatest Common Divisor). Let a and b be integers, not both 0. d is greatest
common divisor (gcd) of a and b if

(1) d|a and d|b
(2) if c|a and c|b then c 6 d

Denoted (a,b)

Theorem 1.10 (Bézout’s identity). Let a and b be integers, not both 0. Let d = (a,b). There
exists integers u, v ∈ Z such that d = au+ bv.

Remark 1.11. This is another application of well ordering principle!

Proof. Let
S = {am+ bn : m,n ∈ Z,am+ bn > 0}

1) Show that S is nonempty.
Takem = a,n = b, then a2+b2 = aa+bb > 0. Since a,b are not both zero, a2+b2 > 0.

Now apply the Well-Ordering Principle to get t = au+ bv
2) We now wish to show t = (a,b).
We must first show that t|a and t|b. By the Division Algorithm,

a = tq+ r, 0 6 r < t

Now we can rewrite this as

r = a− tq = a− (au+ bv)q = a− auq− bvq = a(1− qu) + b(−vq)

Thus r ∈ S and r < t. By our choice of t this forces r = 0. A similar argument shows
that t|b.

3) We must show that t is greatest divisor. Let c|a and c|b. Thus a = kc and b = k ′c.
Then t = au+ bv = kcu+ k ′cv = c(ku+ k ′v). Then

|t| = |ku+ k ′v||c|

Thus c 6 |c| 6 |t| = t (where the last follows as t > 0)
�

1.3. Primes and Factorization.
...[prime numbers] are fundamental. They’re the atoms of arithmetic. Just as
the Greek origin of the word ‘atom’ suggests the primes are ‘a-tomic’, meaning
‘uncuttable, indivisible.’ And just as everything is composed of atoms, every
number is composed of primes.

– Steven Strogatz5

Primes are the building blocks of Z. Primes determine structure (e.g. Fundamental
Theorem of Arithmetic). Primes are ‘atomic’ or ‘irreducible’.

Definition 1.12. An integer p is prime if p 6= 0,±1 and the only divisors of P are ±1 and ±p.

Lemma 1.13. Every integer n except 0,±1 is a product of primes.

Remark 1.14. Here product may mean a trivial product! Another application of the well-ordering
principle! The idea of the proof is to let S be the set of all integers greater than 1 that are not a
product of primes. Then show that S is the empty set. If S is empty every number is a product of
primes!

5The Loneliest Numbers. The Joy of x.
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Proof. Note that if n is a product of primes, then so is −n. Thus we only need to
demonstrate this for n > 1. Let

S = {m ∈ Z : m > 1 and m is not a product of primes}

Suppose that S is not empty. Then by the Well Ordering Principle there is a smallest
integer m ∈ S. Since m is not prime, there must be positive divisors 1 < a,b < m. By
our choice of m, we know a,b 6∈ S. Thus a = p1p2 · · ·pr and b = q1q2 · · ·qs for primes
pi,qj. Thus

m = ab = p1p2 · · ·prq1q2 · · ·qr
is a product of primes. So m 6∈ S. This is a contradiction of S being nonempty. Thus S is
empty. �

Lemma 1.15 (Theorem 1.5 in B.H.). Let p be an integer with p 6= 0,±1. Then p is prime if
and only if p has the following property:

whenever p|bc then p|b or p|c (1)

Proof. (1) Let p be prime and assume p|bc. Consider d = (b,p). Since d|p either d = 1
or d = p.

Case 1) if d = p then p|b.
Case 2) d = 1. By Bézout’s Lemma there exist u, v ∈ Z with

1 = ub+ vp

Multiplying by c on both sides:

c = (cb)u+ cvp

Since p|bc we have bc = kp for some k ∈ Z thus

c = (kp)u+ cvp = p(ku+ cv)

(2) Suppose that p has property (1). We wish to show p is prime. Let q|p. Then
p = kq. By hypothesis this implies p|q or p|k.

Case 1) if p|q then we have p|q and q|p thus q = ±p.
Case 2) p|k and k|p thus p = ±k and q = ±1.

�

Corollary 1.16. If p is prime and p|a1a2 · · ·an then p|ai for some i.

Theorem 1.17 (Fundamental Theorem of Arithmetic). Let n ∈ Z with n 6= 0,±1. Then n is
a product of primes. The prime factorization is unique, i.e. If n = p1p2 · · ·pr and n = q1q2 · · ·qs
with each pi,qi prime, then r = s and after relabeling the q ′s p1 = ±q1,p2 = ±q2, . . . pr = ±qr
Remark 1.18. This is a decomposition theorem and a very important structure theorem. Infor-
mally, we can think of the primes forming a ‘basis’ for Z!

Proof. Suppose n has two prime factorizations, then

p1(p2 · pr) = q1q2 · · ·qs
Then p1|q1q2 · · ·qs implies then p1|qj for some j by the Corollary. Without loss of gen-
erality (by relabeling or reordering), we may assume that p1|q1. As p1,q1 are prime, we
have p1 = ±q1. Thus

±q1p2p3 · · ·pr = q1q2 · · ·qs
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Divide both sides by q1 to get that

p2(±p3p4 · · ·pr) = q2q3 · · ·qs
We can then repeat the application of the Corollary.

Case 1) If r = s, then we are done.
Case 2) If r 6= s, then r > s or r < s. If r > s then we have ±ps+1ps+2 · · ·pr = 1. This

implies that pr|1. But as pr is prime, this is a contradiction as the only divisors of 1 are
±1. A similar contradction arises for r < s (as this implies that ±1 = qrqr+1 · · ·qs with
the qj’s prime). Thus r = s.

�

.

Theorem 1.19. Let n > 1. If n has no positive prime factor less than or equal to
√
n then n is

prime.

Proof. Let n > 1. Suppose n is not prime. Then by the prime decomposition, we may
write n = p1p2k for primes p1,p2 and some integer k ∈ Z. Without loss of generality we
may assume that p1,p2,k are all positive integers. By hypothesis p1,p2 >

√
n. However

this implies that
n = p1p2k > p1p2 >

√
n
√
n = n

This is a contradiction. �
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2. Chapter 2: Congruence

The invention of the symbol ≡ by Gauss affords a striking example of the advan-
tages which may be derived from an appropriate notation, and marks an epoch in
the development of the science of arithmetic.

– G.B. Mathews6

In this section we we’ll study congruence classes of Z. This definition dates back to
Gauss.

‘Congruence’ is a notion of equivalence.
Congruence will be our model for quotient objects (See BH ‘Congruence’ in the the-

matic table of contents pg xvi)

2.1. Congruence Classes. Consider the following simple observation: two a,b ∈ Z are
equal a = b if their difference is zero, i.e. a− b = 0, or a ‘multiple’ of zero a− b = k0

We say that two integers are congruent modulo n if a− b = nk for some k ∈ Z, i.e. there
difference is a multiple of n.

Definition 2.1. a,b,n ∈ Z with n > 0. a is congruent to b modulo n, written a ≡ b mod n
if n|(a− b).

Congruence is an equivalence relation7, meaning that

Theorem 2.2. Let n > 0. Then for all a,b, c ∈ Z

(1) a ≡ a mod n (reflexive)
(2) if a ≡ b mod n then b ≡ a mod n (symmetric)
(3) if a ≡ b mod n and b ≡ c mod n then a ≡ c mod n (transitive)

Proof. (1) We must show a = a mod n. We have that n|0 thus n|(a− a).
(2) We want to show that b− a = k ′n. By hypothesis

a− b = kn

for some k ∈ Z. Mulitplying this equation by -1 we have

(b− a) = (−k)n

Thus b ≡ a mod n.
(3) Let a = b mod n and b = c mod n. We want to show a = c mod n. By

hypothesis (a− b) = nk and (b− c) = nk ′. Now, using the trick of adding zero,

a− c = a− b+ b− c = (a− b) + (b− c) = nk+nk ′ = n(k+ k ′)

�

Remark 2.3. The fact that ‘≡ mod n’ is an equivalence relation is fundamental - for a fixed
n > 0 a ∈ Z has an equivalence class in Zn, we we’ll call a ‘congruence class’ We next
show that we can define addition/multiplication (group/ring) operations on the set of equivalence
classes. This is a concrete example of what will be done in BH Chapter 6.2 (Quotient Rings) and
8.3,8.4 (Quotient Groups).

6Mathews, G. B. (1892). Theory of Numbers. Deighton Bell.
7See https://en.wikipedia.org/wiki/Equivalence relation

https://en.wikipedia.org/wiki/Equivalence_relation
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We now show how addition and multiplication work modulo n.

Theorem 2.4. If a ≡ b mod n and c ≡ d mod n then
(1) a+ c ≡ b+ d mod n
(2) ac ≡ bd mod n

Proof. By hypothesis we have (a− b) = kn and (c− d) = k ′n for k,k ′ ∈ Z.
(1) We must show that n|(a+ c) − (b+ d). We have

(a+ c) − (b+ d) = (a− b) + (c− d) = kn+ k ′n = (k+ k ′)n

Thus n|(a+ c) − (b+ d).
(2) We must show n|ac− bd. Then

ac− bd = ac− ad+ ad− bd = a(c− d) + d(a− b) = a(k ′n) + d(kn) = n(k ′a+ kd)

�

Remark 2.5. Note in the above proof of (2) the trick of ‘adding zero’. This allows us to rewrite
the equation - a very helpful proof technique.

Definition 2.6. Let a,n ∈ Z with n > 0. The congruence class of a modulo n, denoted [a] is
defined as follows:

[a]n = [a] = {b ∈ Z : b ≡ a mod n}

Sometimes the dependence on n is explicit in the notation, i.e. [a]n. When n is clear
from context, then it is written [a].

We quick computation shows that

[a] = {b : b ≡ a mod n} = {b : b = a+ kn for some k ∈ Z} = {a+ kn : k ∈ Z}

Example (even/odd numbers): Let n = 2. Let’s look at congruence classes modulo 2:

[2]2 = {. . . , 2+ (−2)2, 2+ (−1)2, 2+ 0, 2+ (1)2, 2+ (2)2, . . .}
= {. . . ,−2, 0, 2, 4, 6, . . .}

and

[1]2 = {. . . , 1+ (−2)2, 1+ (−1)2, 1+ 0, 1+ (1)2, 1+ (2)2, . . .}
= {. . . ,−3, −1, 1, 3, 5, . . .}

Note that [0]2 = [2]2 is the set of even integers (Why?)

Theorem 2.7 (Theorem 2.3 in B.H.). a ≡ c mod n if and only if [a] = [c]

Proof. First, assume a ≡ c mod n. We must show that [a] = [c]. To exhibit an equality
we show both containments ([a] ⊂ [c] and [c] ⊂ [a]).

We begin by showing that [a] ⊂ [c]. Let b ∈ [a]. Then b = a + kn for k ∈ Z. By
hypothesis a− c = k ′n, thus a = c+ k ′n. Thus

b = a+ kn = (c+ k ′n) + kn = c+ (k ′ + k)n

Therefore b ∈ [c].
Since a ≡ c mod n symmetry implies c ≡ a mod n, therefore the above argument

may be applied to show that [c] ⊂ [a].
Now assume that [a] = [c]. We wish to show that a ≡ c mod n. Since a ∈ [a] = [c], we

have a = c+ kn for some k ∈ Z. Thus n|(a− c). �
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Remark 2.8. Let’s reinterpret Theorem 2.4. It says that if [a] = [b] and [c] = [d] then [a+ c] =
[b + d] and [ac] = [bd]. Thus addition and multiplication of integers preserve congruence
classes.

One of the powerful aspects of congruence classes (or equivalence classes) is that they
partition the set.

Corollary 2.9. Two congruence classes are either disjoint or identical.

Proof. Let [a] and [c] be congruence classes. If [a] ∩ [c] = ∅ then they are disjoint. If not,
then there exists b ∈ [a] ∩ [c]. Thus b ≡ a mod n and b ≡ c mod n. By Theorem 2.3
this implies [a] = [b] = [c].

�

Corollary 2.10. Let n > 1.
(1) If a ∈ Z and a = nq+ r with 0 6 r < n then [a] = [r]
(2) There are exactly n distinct congruence classes, namely [0], [1], . . . , [n− 1]

Proof. (1) Assume a = nq+ r with 0 6 r < n. Thus a− r = qn. So a = r mod n.
Thus [a] = [r].

(2) Let a ∈ Z. Since
a = nq+ r, 0 6 r

by the Division, Algorithm, Part 1 implies that [a] = [r] for some 0 6 r < n.
Thus [a] must be one of [0], [1], . . . [n− 1]. Therefore we’ve shown there are at

most n equivalence classes.
We must now show that these n classes are distinct. We do this by showing

no two of 0, 1, 2, . . . ,n− 1 are congruent modulo n. Without loss of generality let
0 6 s < t 6 n− 1. Thus 0 6 t− s 6 n− 1 Hence n 6 |t− s, thus t 6≡ s mod n.
Therefore by Corollary 2.9 [t] 6= [s]. Thus these are all distinct.

�

Definition 2.11. The set of congruence classes modulo n is denoted Zn

Remark 2.12. The elements of Zn are equivalence classes, not integers. Thus the ‘modular
arithmetic’ done on Zn will be defined on these equivalence classes.

2.2. Modular Arithmetic. The set Zn is the set of congruence classes. Since it is so
closely related to Z - a natural question is ask is: are there operations on Zn?

To define addition, we must define what it means to ‘add’ two congruence classes.
Since we have notions of addition and multiplication in Z, we can ‘define’

[a] + [c] := [a+ c]

Is this well defined?
Similarly, we can ‘define’

[a][c] := [ac]

Is this well-defined?

Remark 2.13. What does it mean to be ‘well-defined’? It implies that the result is independent
of the representative, i.e. if [a] = [b] and [d] = [c] is [a] + [c] = [b] + [d]?
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Theorem 2.14. If [a] = [b] and [c] = [d] in Zn then

[a+ c] = [b+ d] and [ac] = [bd]

Proof. Since [a] = [b] and [c] = [d] we have that a ≡ b mod n and c ≡ d mod n by
Theorem 2.7. We can now invoke Theorem 2.4 to get

a+ c ≡ b+ d mod n

and
ac = bd mod n

Invoking Theorem 2.7 again gives us [a+ c] = [b+ d] and [ac] = [bd].
�

Therefore we have well defined arithmetic in Zn as

[a] + [c] = [a+ c] [a][c] = [ac]

Remark 2.15. Be careful here. The addition in the expression [a] + [c] is addition on congruence
classes. The addition in the expression [a+ c] is addition in Z. The same with multiplication.

Here are some properties:

Proposition 2.16. For [a], [b], [c] ∈ Zn we have
(1) if [a], [b] ∈ Zn then [a] + [b] ∈ Zn (closure of addition)
(2) [a] + ([b] + [c]) = ([a] + [b]) + [c] (Associativity of addition)
(3) [a] + [b] = [b] + [a] (Commutativity of addition)
(4) [a] + [0] = [a] = [0] + [a] (Identity element for add.)
(5) For [a] ∈ Zn there exists [b] ∈ Zn such that [a] + [b] = [0] (additive inverse)

(6) If [a], [b] ∈ Zn then [a][b] ∈ Zn (closure of multiplication)
(7) [a]([b][c]) = ([a][b])[c] (assoc. of mult.)
(8) [a][b] = [b][a] (commutativity of mult.)
(9) [a][1] = [a] = [1][a] (identity element for mult.)

(10) [a]([b] + [c]) = [a][b] + [a][c] and ([a] + [b])[c] = [a][c] + [b][c] (distributivity)

Remark 2.17. (1)− (5) say that + is an abelian group. (6)− (9) say that mult. is a commutative
monoid. Distributivity is a ring axiom that links them together.

Proof. (1), (6) follow straight from definitions. For (2)

[a]+ ([b]+ [c]) = [a]+ [b+ c] = [a+(b+ c)] = [(a+b)+ c] = [a+b]+ [c] = ([a]+ [b])+ [c]

The proofs of the others follow from using the definition and similar operations in Z.
�

Remark 2.18. The above section says that since addition and multiplication preserve congruence,
they can be used to define ‘addition’ and ‘multiplication’ of congruence classes themselves. This
means that the set of congruence classes (modulo n) form a ring (the subject of chapter 3). The
map

Z→ Zn

sending an integer a→ [a] is compatible with addition and multiplication (it is a ring homomor-
phism).
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Example: Let n = 13. Let’s compute ([7] + [9])([11] + [16]). Notice we could do lift this
to the integers and compute (7+ 9)(11+ 16) mod 3. Instead, we can use our rules, i.e.

([7] + [9])([11] + [16]) = ([7+ 9])([11+ 16]) = [3][4] = [12]

2.3. Structure of Zn. The structure of Zn - particularly when n is prime - is of great
importance.8

Theorem 2.19. Let p > 1. Then the following are equivalent (TFAE):
(1) p is prime
(2) For any [a] 6= [0] (in Zp) the equation [a][x] = [1] has a solution in Zp

(3) Whenever [b][c] = 0 (in Zp) then [b] = [0] or [c] = [0]

Proof. We show (1) =⇒ (2). Assume p ∈ Z is prime and [a] 6= [0] ∈ Zp. Thus a 6= 0
mod p, and p 6 |a. Let d = (a,p). Then d = 1 or d = p. But d 6= p since d|a and p 6 |a.
Thus we have d = 1.

By Bezout’s Lemma we may write 1 = ua+ vp for u, v ∈ Z. Thus au− 1 = (−v)p.
Thus p|au− 1, implying au = 1 mod p, i.e. [au] = [1]. Therefore [a][u] = [1].
(2) =⇒ (3). Suppose [b][c] = 0 in Zp. We wish to show that [b] = [0] or [c] = [0] (in

Zp). If [b] = [0] then we’re done. If [b] 6= 0, then by hypothesis there exists [u] such that

[b][u] = [1]

Multiplying this equation by [c] we have

0 = [cb][u] = [c][b][u] = [c][1] = [c]

(3) =⇒ (1). Assume that b, c are any integers such that p|bc. Thus bc = 0 mod p,
implying [b][c] = [bc] = [0] in Zp. Therefore by hypothesis either [b] = 0 or [c] = 0. This
implies b = 0 mod p or c = 0 mod p, implying p|b or p|c. Thus by a previous theorem
(Theorem 1.5 in BH) p is prime. �

Remark 2.20. Recall the structure of ‘TFAE’ proofs - see page 508 in BH.

Theorem 2.21. Let a,n ∈ Z with n > 1. Then [a]x = [1] has a solution in Zn if and only if
(a,n) = 1 in Z.

Proof. This proof is an if and only if. Thus there are two parts.
Assume that the equation has a solution. We will show that (a,n) = 1. If [a][w] = [1],

then

[a][w] = [1] (2)
[aw] = [1] (3)

aw ≡ 1 mod n (4)
aw− 1 = kn for some k ∈ Z (5)

aw+n(−k) = 1 (6)

Let d = (a,n). Then dr = a and ds = n for some r, s ∈ Z. So

1 = aw+n(−k) = (dr)w+ ds(−k) = d(rw− sk)

8See Theorems 9.7-9.12 in BH to see how these Zp will be fundamental building blocks of any finite
abelian group.
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Thus d|1, however as d > 0 we have d = 1.
Now assume (a,n) = 1. We must show [a]x = [1] has a solution in Zn. By Bezout’s

Lemma there exists integers u, v ∈ Z such that

1 = ua+ vn

Rearranging, ua− 1 = (−v)n. Therefore ua = 1 mod n and

[u][a] = [ua] = [1]

�

An element [a] in Zn is called a unit if [a][x] = [1] has a solution. In this case there
there exists [b] with [a][b] = [1] and we say that [b] is the inverse of [a]. Restating this last
theorem in terms of units:

Theorem 2.22. Let a and n be integers with n > 1. Then [a] is a unit in Zn if and only if
(a,n) = 1 in Z
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3. Chapter 3: Ring Theory

The axiomatic method has many advantages over honest work.
– Bertrand Russell9

A ring is a set on which you have two operations: ‘addition’ and ‘multiplication’. We’ll
show that there is a notion of ‘subtraction’ in all rings (additive inverse). However, we
will observe that in some rings there is not a notion of ‘division’ (multiplicative inverse).

3.1. Definition and Examples. We’ll start with familiar examples. Then we’ll introduce
the axioms which formalize their common properties. This allows us to prove theorems
for ‘arbitrary rings’ (meaning any example that obeys the ring axioms). Therefore the
results we prove will be valid for our specific examples. This is the power and process
of abstract algebra.

3.1.1. Number Systems. Z, Zn are the rings we have just studied in Chapter 1,2.
The familiar sets Q, R, C are examples of rings.

3.1.2. Matrices. Let M2(R) be the set of all 2× 2 matrices over R, i.e.(
a b
c d

)
a,b, c,d ∈ R

Recall that addition is defined component-wise:(
a b
c d

)
+

(
a ′ b ′

c ′ d ′

)
=

(
a+ a ′ b+ b ′

c+ c ′ d+ d ′

)
And multiplication is defined as follows:(

a b
c d

)(
w x
y z

)
=

(
aw+ by ax+ bz
cw+ dy cx+ dz

)
3.1.3. Functions. Let F := {f : R → R}. Then we may define addition and multiplication
component-wise as

(f+ g)(x) = f(x) + g(x) (fg)(x) = f(x)g(x)

Are there zero divisors? i.e. f,g 6= 0 such that fg = 0?

3.1.4. Axiomitize. Let us now axiomitize the common properties of these sets.

Remark 3.1. By ‘axiomitize’ we mean we will write down explicit axioms (1-8) that these sets
obey which capture the common characteristics that we want to isolate. In particular, (R,+) is an
abelian group, (R, ·) is a semigroup and there is a relationship between +, · given by distributivity.

This should look similar to Theorem 2.7 in BH where we wrote down properties of
multiplication and addition in Zn.

Definition 3.2 (Ring). A ring is a nonempty set R equipped with two operations, (+, ·)
that satisfy the following:

(1) If a ∈ R and b ∈ R then a+ b ∈ R (Closure of addition)
9An oft-quoted paraphrase of Russell, B. (1920). Introduction to Mathematical Philosophy.
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(2) a+ (b+ c) = (a+ b) + c (associative addition)
(3) a+ b = b+ a (commutativity of addition)
(4) There exists 0R in R such that a + 0R = a = 0R + a for every a ∈ R (Additive

identity element)
(5) For each a ∈ R there exists x ∈ R such that a+ x = 0R (additive inverse element)
(6) If a ∈ R and b ∈ R then ab ∈ R (closure of multiplication)
(7) a(bc) = (ab)c (Associative multiplication)
(8) a(b+ c) = ab+ ac and (a+ b)c = ac+ bc (Distributive laws)

Remark 3.3. Conditions (1)− (5) stipulate constraints on the + operation - in fact, they indicate
that (R,+) is an abelian group. Conditions 6, 7 constrain the · operation, they show that (R, ·)
is a semigroup.

Rings do not necessarily have a multiplicative identity!

Definition 3.4. A ring with identity is a ring R that contains an element 1R such that
a1R = a = 1Ra for all a ∈ R

Remark 3.5. Such rings are also called unital rings. Be very careful if you are looking at the
statements about rings in different texts (e.g. wikipedia). Some assume rings have a multiplicative
identity and some do not. Our text does not assume it. This becomes most salient when you are
trying to prove various statements about rings!10

Remark 3.6. The standard example of a ring without multiplicative identity is 2Z := {2n : n ∈
Z}, i.e. the even integers. Other examples of rings without multiplicative identities come from
analysis (for instance some particular ring of functions not containing f(x) ≡ 1). Can you find
any? Here’s one. f : R→ R is said to have compact support if there exist are real numbers a,b
(depending on f0 such that f(x) = 0 for x 6∈ [a,b], (i.e. f is zero outside a bounded interval).
The set of functions f : R → R with compact support is a commutative ring without identity -
Why?). However,as most of our concrete examples in this class will come from algebra, they will
typically have multiplicative identities.

Moreover, the multiplication is not necessarily commutative.

Definition 3.7. A commutative ring is a ring R that such that ab = ba for all a,b ∈ R.

Which of the examples above is not commutative? Matrices are the one of the best models
for noncommutative rings.

3.1.5. More Concepts. We’ve seen that nonzero elements can multiply to give zero. In
many cases this is undesirable and we can strengthen the definition by excluding this:

Definition 3.8 (Integral Domain). An integral domain is a commutative ring R with iden-
tity 1R 6= 0R such that if a,b ∈ R and ab = 0R then a = 0R or b = 0R

Remark 3.9. Another way to say this is that an integral domain is a commutative ring that
contains no zero divisors!

Remark 3.10. The condition 1R 6= 0R excludes the 0 ring from being an integral domain.

Is Z an integral domain? Zn? For what types of n?

10See https://en.wikipedia.org/wiki/Rng (algebra) for some discussion.

https://en.wikipedia.org/wiki/Rng_(algebra)
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Definition 3.11 (Field). A field is a commutative ring R with identity 1R 6= 0R such that
for each a ∈ R with a 6= 0R the equation ax = 1R has a solution in R.

What are some examples? How about Q, R? Zp?

3.1.6. Subrings.

Definition 3.12. Let S ⊂ R. If S is a ring then S is called a subring of R.

Examples of subrings:
Let C(R) := {f ∈ F : f continuous} ⊂ F. Is this a subring? Why? From our knowledge

of continuous functions this is a subring.
Conditions of a subring: checking some subset S ⊂ R is a subring is easier than checking

that S is a ring.

Theorem 3.13. Let R be a ring. Let S ⊂ R. Suppose that
(1) S is closed under addition
(2) S is closed under multiplication
(3) 0R ∈ S
(4) if a ∈ S then a+ x = 0 has solution in S (closed under inverses)

then S is a subring of R.

Why? If R is a ring, then elements of S already obey the other properties.
Example Applications:

GL2(R) = {A ∈M2(R) : there exists B ∈M2(R) such that AB = 1M2 = BA}

Is GL2(R) a subring of M2(R)? (Why not? How about the (3) in Theorem 3.13?)

Proposition 3.14. Let Z[
√
2] = {a+ b

√
2 : a,b ∈ Z}. Show this a subring of R.

Proof. We’ll apply the previous theorem.

(1) a+ b
√
2+ c+ d

√
2 = (a+ c) + (b+ d)

√
2 ∈ Z[

√
2].

(2) (a+ b
√
2)(c+ d

√
2) = ac+ ad

√
2+ bc

√
2+ 2bd = (ac+ 2bd) + (ad+ bc)

√
2 ∈

Z[
√
2]

(3) 0 = 0+ 0
√
2 ∈ Z[

√
2]

(4) For a+ b
√
2 we have (a+ b

√
2) + (−a+−b

√
2) = 0.

�

3.2. Properties of Rings.

3.2.1. Arithmetic in Rings. Everyone is familiar with the addition and ‘subtraction’ in the
ring Z. However subtraction is not explicit in the definition of a ring. By

a− b

we mean a+ (−b), where −b is the solution to b+ x = 0. We now show this solution is
unique.

Theorem 3.15. Let R be a ring. For a ∈ R the equation a+ x = 0 has a unique solution.
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Proof. By definition of ring, a+ x = 0 has some solution u. Suppose u, v are both solu-
tions. Then

v = 0+ v = (a+ u) + v = (u+ a) + v) = u+ (a+ v) = u+ 0 = u

Thus u is unique. �

Remark 3.16. It is important to notice that ‘− ′ is not an operation! It is notation for an inverse
element, i.e. the notation −a denotes the unique element of −a ∈ R such that

a+ (−a) = 0 = (−a) + a

Consider the equation
a+ b = a+ c

with a,b, c elements of an arbitrary ring R. Does this imply b = c? In Z we know it
does. For an arbitrary ring we need to know that we have a ‘cancellation law’ meaning
that we can add the element ‘-a’ to both sides to get b = c

Theorem 3.17. If a+ b = a+ c in R then b = c

Proof.

a+ b = a+ c

−a+ (a+ b) = −a+ (a+ c) add −a to both sides
(−a+ a) + b = (−a+ a) + c Use associativity of +

0R + b = 0R + c use additive identity, i.e. Axiom 4

b = c

�

More properties than are familiar from Z and hold for arbitrary rings:

Theorem 3.18. Let R be a ring. Let a,b ∈ R. Then
(1) a0R = 0R = 0Ra

Proof. a(0R) = a(a− a) = aa− aa = 0 and 0Ra = (a− a)a = aa− aa = 0R. �

(2) a(−b) = −ab and (−a)b = −ab

Proof. We must show that a(−b) solves the equation ab+ x = 0R. ab+ a(−b) =
a(b− b) = 0R �

(3) −(−a) = a

Proof. −(−a) is the solution to −a + x = 0R. Since a solves this equation, by
uniqueness a = −(−a). �

(4) −(a+ b) = (−a) + (−b)

Proof. (a+ b) + (−a+−b) = a+ (−a) + b+ (−b) = 0R + 0R = 0R �

(5) −(a− b) = −a+ b

Proof. −(a− b) = −(a+ (−b)) = (−a) +−(−b) = −a+ b �

(6) (−a)(−b) = ab
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Proof. By using two equations of (2) we have (−a)(−b) = −(a(−b)) = −(−ab) =
ab �

and if R has an identity, then
(7) (−1R)a = −a

Proof. (−1R)a = −(1Ra) = −(a) = −a �

Subtraction provides an easier theorem for showing that a subset is a subring.

Theorem 3.19. Let R be a ring. Let S ⊂ R such that S 6= ∅ and
(1) For a,b ∈ S we have a− b ∈ S (S closed under subtraction)
(2) For a,b ∈ S we have ab ∈ S (closed under multiplication)

Proof. We show that S satisfies the conditions of our previous theorem.
(1) We must show S is closed under multiplication. This is Part 2 of our hypothesis.
(2) We must show that 0R ∈ S. Since S is nonempty, there is some c ∈ S. By

hypothesis 0 = c− c ∈ S. (Closure of subtraction)
(3) We must show that if a ∈ S then −a ∈ S. Since we have 0 ∈ S we have −a =

0R − a ∈ S.
(4) We must show closure of addition. Let a,b ∈ S. Since we have −b ∈ S we can

write a+ b = a− (−b) ∈ S.
�

3.3. Units, Zero Divisors. We introduced units and zero divisors in Zn. We now explore
these in arbitrary rings.

Definition 3.20 (Field). Let R be a ring with identity. a ∈ R is a unit if there exists u ∈ R
such that

au = 1R = ua

In this case u is called the multiplicative inverse of a and is denoted a−1.
What are the units of Z? (±1)
Here’s a relationship between fields and units. Let F be a field. Then F is commutative

ring with identity, and by definition there exists some u ∈ F such that au = 1R. Thus
every element of a field is a unit.

Definition 3.21 (Zero Divisor). Let R be a ring. Then a ∈ R is a zero divisor if
(1) a 6= 0R
(2) There exists a nonzero element c ∈ R such that ac = 0R or ca = 0R

Note that c is not necessarily unique. Consider Z6. For [3] ∈ Z6 we have [2][3] = 0 and
[4][3] = 0 with [2] 6= [4].

And for a noncommutative ring we may have ac = 0R and ca 6= 0R Can you find an
example? What’s the archetypical noncommutative ring? Here’s an example in M2(R):(

0 1
0 0

)(
1 0
0 0

)
=

(
0 0
0 0

)
(
1 0
0 0

)(
0 1
0 0

)
=

(
0 1
0 0

)
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What’s the relationship between integral domains and zero divisors? An integral do-
main satisfies the property that if ab = 0 then a = 0 or b = 0. The contrapositive of this
is a 6= 0,b 6= 0 implies ab 6= 0. Thus integral domains cannot contain zero divisors.

Remark 3.22. Integral domains are important because they imply a cancellation property for the
multiplication!

Theorem 3.23. Cancellation is valid in any integral domain R, i.e. if a 6= 0R and ab = ac in R
then b = c

Proof. Let ab = ac. Then ab− ac = 0. Thus a(b− c) = 0. Since a 6= 0R then b− c = 0R
(Why? if not a would be a zero divisor). Thus b = c. �

Theorem 3.24. Let F be a field. Then F is an integral domain.

Proof. We must show that if ab = 0F then a = 0F or b = 0F. Let a,b ∈ F such that

ab = 0

If b = 0 then we’re done. If b 6= 0, then b is a unit is F is a field. Thus applying b−1 to
the equation we have

a = abb−1 = 0b−1 = 0

Thus a = 0. Therefore F is an integral domain. �

Remark 3.25. The converse of this theorem (i.e. an integral domain is a field) is not true in
general! For instance, consider Z. However, it is true in the finite case.

Remark 3.26. The next theorem is very relevant to the workshop problems. In fact, is an abstract
version of one of the more concrete workshop problems. Can you see the resemblance?

Theorem 3.27. Let R be a finite integral domain. Then R is a field.

Proof. Let R be a finite integral domain. Then R is a finite commutative ring with identity.
Since R is finite, |R| = n. Thus we only need to show that for a 6= 0R the equation ax = 1R
has a solution. Let a ∈ R with a 6= 0R.

Consider the set S = {ax : x ∈ R} ⊆ R. What is its cardinality? Suppose |S| < n. Then
we must have ax = ay for x,y ∈ R with x 6= y. Thus a(x− y) = 0R. This implies x = y
since R is an integral domain. This is a contradiction.

Thus |S| = n. This implies S = R. Therefore 1R ∈ S and there exists y ∈ R such that
ay = 1R. Thus R is a field.

�

A relationship to keep in mind is the following:

Fields ⊆ Integral Domains ⊂ Rings

The first ⊆ comes from Theorem 3.24. Moreover for finite rings, we have shown that
this inclusion is equality: Fields = Integral Domains.



MATH 351: INTRODUCTION TO ABSTRACT ALGEBRA SUMMER 2017, RUTGERS UNIVERSITY 19

3.4. Morphisms.
. . . much of Mathematics is dynamic, in that it deals with morphisms of an object
into another object of the same kind. Such morphisms (like functions) form cate-
gories, and so the approach via categories fits well with the objective of organizing
and understanding Mathematics.

– Saunders MacLane11

Isomorphic rings are rings that have the same structure.
Here is the intuitive idea: rings R and S are isomorphic if one can relabel the elements

of R to get S. Let’s look at an example.
Let S = {0, 5} ⊂ Z10. Is S a subring? (Show that it is closed under subtraction and

multiplication)
We claim that S has ‘the same structure’ as Z2. Speaking coarsely, what is meant by this

is that up to a relabeling the multipication and addition tables are the same. Therefore
the operations (+, ·) in S work in the same way as those in Z2, i.e. the ring S ‘is’ Z2 with
different labels.

In S we have the following addition/multiplication tables. Recall that 0 = [0] ∈ Z10

and 5 = [5] ∈ Z10.

(+ [0]10 [5]10
[0]10 0 5
[5]10 5 0

) (· [0]10 [5]10
[0]10 0 0
[5]10 0 5

)
In Z2 we have the following tables. Recall that 0 = [0] ∈ Z2 and 1 = [1] ∈ Z2.

(+ [0]2 [1]2
[0]2 0 1
[1]2 1 0

) (· [0]2 [1]2
[0]2 0 0
[1]2 0 1

)
Consider the relabeling

[0]10 7→ [0]2 [5]10 7→ [1]2

This is a function from S → Z2 that transforms the multiplication/addition tables in S
to those of Z2.

Definition 3.28. A ring R is isomorphic to a ring S if there is a function f : R→ S such that
(1) f is injective
(2) f is surjective
(3) f(a+ b) = f(a) + f(b) f(ab) = f(a)f(b) for all a,b ∈ R

In this case the function f is called an isomorphism.

3.4.1. Example: Complex Numbers. Consider the set K of 2× 2 matrices of the form(
a b
−b a

)
a,b ∈ R

11MacLane, S. (2012). Mathematics form and function. Springer Science & Business Media. Histori-
cal anecdote: Saunders MacLane was the PhD advisor of Thomas W. Hungerford, the author of BH
https://en.wikipedia.org/wiki/Thomas W. Hungerford

https://en.wikipedia.org/wiki/Thomas_W._Hungerford
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We claim that K is isomorphic to the field C of complex numbers. To show this, define
the function f : K→ C by

f

(
a b
−b a

)
= a+ bi

We show that f is injective, assume that

a+ bi = f

(
a b
−b a

)
= f

(
r s
−s r

)
= r+ si

Then a = r and s = b. Therefore(
a b
−b a

)
=

(
r s
−s r

)
f is surjective, as for any a+ bi ∈ C we have

f

(
a b
−b a

)
= a+ bi

Finally, we have

f
[(

a b
−b a

)
+

(
c d
−d c

)]
= f

(
a+ c b+ d
−b− d a+ c

)
= (a+ c) + (b+ d)i

= (a+ bi) + (c+ di) = f

(
a b
−b a

)
+ f

(
c d
−d c

)
and

f
[(

a b
−b a

)(
c d
−d c

)]
=

(
ac− bd ad+ bc
−ad− bc ac− bd

)
= (ac− bd) + (ad+ bc)i

= (a+ bi)(c+ di) = f

(
a b
−b a

)
f

(
c d
−d c

)
3.4.2. Example: Reflection. Let f : C → C be the complex conjugation map given by
f(a+ bi) = a− bi. This function has a geometric interpretation in the complex plane,
where a+ bi is identified with the point (a,b).

The function f reflects the plane over the real line R, with (a,b) 7→ (a,−b).12

The function f satisfies:

f
[
(a+ bi) + (c+ di)

]
= f
[
(a+ c) + (b+ d)i

]
= (a+ c) − (b+ d)i

= (a− bi) + (c− di) = f(a+ bi) + f(c+ di)

12This reflection is an example of a symmetry. Symmetries are often formalized as distance/structure-
preserving bijections from an object to itself. We’ll study symmetries more when we get to group theory.
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and

f
[
(a+ bi)(c+ di)

]
= f
[
(ac− bd) + (ad+ bc)i

]
= (ac− bd) − (ad+ bc)i

= (a− bi)(c− di) = f(a+ bi)f(c+ di)

Isomorphic rings are an important example. But more important are morphisms that
preserve ‘structure’ meaning they respect the multiplication/addition of both rings.

Definition 3.29. Let R,S be rings. A function f : R→ S is said to be a ring homomorphism
if

(1) f(a+ b) = f(a) + f(b) (f is additive)
(2) f(ab) = f(a)f(b) (f is multiplicative)

for all a,b ∈ R

Remark 3.30. f is called ‘additive’ if f obeys condition (1). f is called ‘multiplicative’ if f obeys
condition (2).

A homomorphism which is injective is called a monomorphism. A surjective homomor-
phism is called an epimorphism. As we have seen a homomorphism which is injective
and surjective is an isomorphism. For a fixed b ∈ S the set f−1(b) = {a ∈ R : f(a) = b} is
called the fiber over b.

3.4.3. Examples.
(1) For rings R and S, the zero map f : R → S is given by f(r) = 0S for all r ∈ R. We

write f ≡ 0. Why is this a homomorphism?

f(a+ b) = 0S = 0S + 0S = f(a) + f(b) f(ab) = 0S = 0S0S = f(a)f(b)

(2) Consider the map f : Z→ Z2, defined by

Z 3 n 7→ [n] ∈ Z2

The map is additive and multiplicative as

f(n+m) = [n+m] = [n] + [m] = f(n) + f(m) f(nm) = [nm] = [n][m] = f(n)f(m)

Notice that if n is even that [n] = [0]. If n is odd then [n] = [2k+ 1] = [1]. f is
additive since the sum of two even or odd numbers is even and the sum of an
even integer and an odd integer is odd, the product of two odd integers is odd
and the product of an even integer with any integer is even.

The fiber of f above 0 is the set of even integers. The fiber of f above 1 is the set
of odd integers.

(3) Fix n ∈ Z. Is the map fn : Z→ Z defined by

fn(x) = nx

a homomorphism? Why not? Consider f(xy) = nxy and f(x)f(y) = nxny =
n2xy. (Thus fn is a homomorphism if n = 0, 1, and f0 is the zero morphism, f1 is
the identity)

(4) The map g : R→M2(R) given by

g(r) =

(
0 0
−r r

)
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Let’s check this is a homomorphism. For any r, s ∈ R we compute

g(r) + g(s) =

(
0 0
−r r

)
+

(
0 0
−s s

)
=

(
0 0

−r− s r+ s

)
=

(
0 0

−(r+ s) r+ s

)
= g(r+ s)

and

g(r)g(s) =

(
0 0
−r r

)(
0 0
−s s

)
=

(
0 0

−rs rs

)
= g(rs)

What are the properties of g? Is it injective (Why)? Surjective (Why not)?
(5) Consider f : R→ R given by

f(x) = x+ 2

Is f a homomorphism? We have

f(a) + f(b) = (a+ 2) + (b+ 2) = (a+ b+ 2) + 2 = f(a+ b) + 2

or

f(a)f(b) = (a+2)(b+2) = ab+2a+2b+4 = (ab+2)+2a+2b+2 = f(ab)+2a+2b+2

Theorem 3.31. Let f : R→ S be a homomorphism of rings. Then
(1) f(0R) = 0S
(2) f(−a) = −f(a) for every a ∈ R
(3) f(a− b) = f(a) − f(b) for all a,b ∈ R

Proof. (1) f(0R) + f(0R) = f(0R + 0R) = f(0R) = f(0R) + 0S Thus

f(0R) + f(0R) = f(0R) + 0S

so from cancellation we have f(0R) = 0S.
(2) f(a) + f(−a) = f(a− a) = f(0R) = 0S. Thus f(−a) is the solution to the equation

f(a) + x = 0S. We know that this solution (which is −f(a)) is unique. Therefore
f(−a) = −f(a).

(3) f(a− b) = f(a+ (−b)) = f(a) + f(−b) = f(a) + (−f(b)) = f(a) − f(b)
�

(1) above says homomorphisms respect additive identities. However, they don’t have
to respect multiplicative identities! Give a simple example of a ring homomorphism
f : R→ S with doesn’t map 1R → 1S. How about f : R→M2(R) given by

a 7→
(
a 0
0 0

)
Then 1 does not map to 1M2(R). On the other hand,

f(1) =

(
1 0
0 0

)
is a unit for f(R). This leads us to our next theorem.

Theorem 3.32. If R is a ring with identity and f is surjective, then
(1) S is a ring with identity f(1R)
(2) Whenever u is a unit in R then f(u) is a unit in S and f(u)−1 = f(u−1)
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Proof. (1) We show that f(1R) ∈ S is the identity element. Let x ∈ S. Since f is
surjective there exists a ∈ R with f(a) = x. Then

f(1R)x = f(1R)f(a) = f(1Ra) = f(a) = x

and
xf(1R) = f(a)f(1R) = f(a1R) = f(a) = x

(2) Let u be a unit in R. We show that f(u) is a unit in S. We compute

f(u)f(u−1) = f(uu−1) = f(1R) = 1S

and
f(u−1)f(u) = f(u−1u) = f(1R) = 1S

�

3.4.4. Ring Concepts. Let f : R→ S be a function. The image of f is defined as

Im f = {s ∈ S : s = f(r) for some r ∈ R} = {f(r) : r ∈ R}

Proposition 3.33. Let f : R → S be a homomorphism of rings. Then the image of f (denoted
Im f) is a subring of S.

Proof. Imf is nonempty since 0S = f(0R). Therefore we will invoke Theorem 3.6 in BH.
Let a,b ∈ Imf. Then a = f(x),b = f(y) for x,y ∈ R. We have to show two things.

(1) Closure under subtraction. a− b = f(x) − f(y) = f(x− y) ∈ Imf.
(2) Closure under multiplication. ab = f(x)f(y) = f(xy) ∈ Imf.

�

Definition 3.34. The kernel of the ring homomorphism f : R→ S, denoted ker f is the set
of elements that maps to zero, i.e.

ker f = {a ∈ R : f(a) = 0S}

Remark 3.35. The kernel of a homomorphism measures the degree to which the homomorphism
fails to be injective. This fact is captured by the next result, Proposition 3.36.

Proposition 3.36. Let f : R→ S be a ring homomorphism. Then ker f = {0R} if and only if f is
injective.

Proof. We first show ( =⇒ ). Let a,b ∈ R such that f(a) = f(b). We wish to show that
a = b. Since f is a homomorphism

f(a) − f(b) = 0

f(a− b) = 0

Thus a− b ∈ 0R.
We now show ( ⇐= ). Let f be injective. We wish to show that ker f = {0R}. Let
a ∈ ker f. We have

f(a) = 0S = f(0)

Then a = 0 since f is injective.
�
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3.4.5. Product Rings. Let R,S be rings. Consider the cartesian product R× S. This is a
set, which we’ll equip with addition and multiplication.

Proposition 3.37. Consider R× S. Define addition and multiplication component-wise

(r, s) + (r ′, s ′) = (r+ r ′, s+ s ′) (r, s)(r ′, s ′) = (rr ′, ss ′)

Then R× S is a ring. If R,S are both commutative then so is R× S. If both R,S have an identity,
then so does R× S.

For example, let’s take Z2 ×Z2. We can look at the addition and multiplication tables
below:


+ (0, 0) (0, 1) (1, 0) (1, 1)
(0, 0) (0, 0) (0, 1) (1, 0) (1, 1)
(0, 1) (0, 1) (0, 0) (1, 1) (1, 0)
(1, 0) (1, 0) (1, 1) (0, 0) (0, 1)
(1, 1) (1, 1) (1, 0) (0, 1) (0, 0)




· (0, 0) (0, 1) (1, 0) (1, 1)
(0, 0) (0, 0) (0, 0) (0, 0) (0, 0)
(0, 1) (0, 0) (0, 1) (0, 0) (0, 1)
(1, 0) (0, 0) (0, 0) (1, 0) (1, 0)
(1, 1) (0, 0) (0, 1) (1, 0) (1, 1)


3.4.6. Existence of Isomorphisms. In general, there are no rules (algorithms) for determin-
ing whether two rings are isomorphic. One must construct an isomorphism.

Often it is equally important (and much easier) to demonstrate that two rings are not
isomorphic. To do this, one has to show that there does not exist any isomorphism from
one to the other. For this it is often useful to study invariants, or properties preserved under
isomorphism. Often times that means that if f : R → S is an isomorphism and R obeys
some property, then f(R) = S obeys the same property. Sometimes this means that if
a ∈ R obeys a property then f(a) obeys that property for isomorphism f : R→ S.

(1) Is Z6 isomorphic to Z12? To Z? (Why not?) Easiest way is to compare cardinali-
ties.

(2) Are Z4 and Z2 ×Z2 isomorphic? Their cardinalities are the same. Suppose so.
Then there exists isomorphism f : Z4 → Z2 ×Z2. Then f(1) = (1, 1) (why ? since
1Z4 7→ 1Z2×Z2). Therefore

f(2) = f(1+ 1) = f(1) + f(1) = (1, 1) + (1, 1) = (2, 2) = (0, 0)

(3) In Z8 the elements 1, 3, 5, 7 are units. Suppose f : Z8 → S is an isomorphism.
Where do f(1), f(3), f(5), f(7) get sent? f must map these four units to four units
in S. In particular Z8 is not isomorphic to Z4 ×Z2 since this latter ring has only
two units (1, 1) and (3, 1).

(4) Let R be a commutative ring and f : R → S be an isomorphism. Then for any
a,b ∈ R we can write a = f(x),b = f(y) for x,y ∈ R and

ab = f(x)f(y) = f(xy) = f(yx) = f(y)f(x) = ba

So S is commutative.
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4. Polynomials and the ring R[x]

Bitte vergiß alles, was Du auf der Schule gelernt hast; denn Du hast es nicht
gelernt.

– Edmund Landau13

The starting point for this chapter are the polynomials with ‘coefficients’ from a ring
R. Just as Zn was a model, the ring of polynomials R[x] be also be a model for rings. As
we cover more concepts in ring theory, apply them to Zn and R[x] to get an intuition for
how they work.

4.1. Polynomial Arithmetic. We want to define a ‘polynomial’ in a rigorous fashion.
Let R be a ring. A polynomial with coefficients in R is an expression of the form

a0 + a1x+ a2x
2 + . . .+ anx

n (7)

where n > 0 (n nonnegative integer) and ai ∈ R.
There are obvious questions: what is x? Is x ∈ R? Notice that the expression (7) makes

sense provided that ai and x all lie in some larger ring T that contains R, i.e. R ⊂ T .
For instance, π 6∈ Z. But the expression 3− 4π+ 12π2 + π3 makes sense in R. Further-

more, it is not difficult to verify that the set of all numbers of the form

a0 + a1π+ a2π
2 + . . .+ anπ

n n > 0,ai ∈ Z

is a subring of R that contains Z and π.
The next theorem is in the vein of this example. It lets us speak of polynomials rigor-

ously.

Theorem 4.1. Let R be a ring with identity. Then there exists a ring T containing an element
x 6∈ R such that:

(1) R is a subring of T
(2) xa = ax for every a ∈ R
(3) The set R[x] of all elements of T of the form

a0 + a1x+ a2x
2 + . . .+ anx

n n > 0,ai ∈ R
is a subring of T that contains R

(4) The representation of elements of R[x] is unique: if n > m and

a0 + a1x2 + a2x
2 + . . . anx

n = b0 + b1x+ b2x
2 + . . .+ bmx

m

then ai = bi for 0 6 i 6 n and bi = 0R for i > n
(5) a0 + a1x+ a2x2 + . . .+ anxn = 0R if and only if ai = 0R for all i

Proof. See BH Appendix G. Or see Hungerford (GTM) Chapter 3, Section 5. To give a
flavor, consider the set of infinite sequences

(a0,a1,a2, . . .)

13Roughly: ‘Please forget everything that you learned at school, because you have not learned it.’
Landau, E. (1965). Grundlagen Der Analysis: With Complete German-English Vocabulary (Vol. 141). American
Mathematical Soc..
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such that ai ∈ R and only finitely many of the ai are nonzero (i.e. there is some k such
that ai = 0R for all i > k)

The special term x will then be the element

(0, 1R, 0, 0, . . .)

We think of
(a0,a1, 0, 0, . . .) = a0 + a1x2

The left hand side is an infinite sequence. The right hand side is a polynomial. From
this, we can see that the coefficient ai of xi holds the ith term in the sequence

We define addition component-wise:

(a0,a1,a2, . . .) + (b0,b1,b2, . . .) = (a0 + b0,a1 + b1,a2 + b2, . . .)

Multiplication is defined as follows:

(a0,a1,a2, . . .)(b0,b1,b2, . . .) = (c0, c1, c2, . . .)

where cn =
∑n
i=0 an−ibi

�

The elements of the ring R[x] are called polynomials with coefficients in R and the ai are
the coefficients. The element x is sometimes called an indeterminate or formal variable.

Remark 4.2. Theorem 4.1 as stated needs R to be a ring with identity. This is required in order
to contain the element x = (0, 1R, 0, . . .). However, we can also form polynomial rings that don’t
contain x, as we’ll see below.

Remark 4.3. Property (2) does not imply that T is commutative.
Observe that Property (5) is just a special case of (4), i.e. if a0 + a1x1 + . . .+ anxn = 0Rx

0 +
0Rx

1 + . . . 0Rx
n then ai = 0R.

The expression in (5) is not an equation to be ‘solved’ for x. x is not a variable, it is a specific
element of a ring.

4.1.1. Basic Examples. The rings Z[x], Q[x], R[x] are the rings of polynomials with which
you are likely familiar.

Let E be the ring of even integers (sometimes denoted 2Z). Then 2− 4x+ 2x2 ∈ E[x].
However x 6∈ E[x].

4.1.2. Polynomial Arithmetic. Addition for polynomials follow from the fact that R[x] is a
ring (which was given by Theorem 4.1).

Let’s consider a more exotic example. Consider the ring Z7[x]. We’ll do some addition
in Z7[x]. Define f(x) = 1+ 5x− x2+ 4x3+ 2x4 and g(x) = 4+ 2x+ 3x2+ x3 in Z7[x]. Then

f(x) + g(x) = (1+ 5x− x2 + 4x3 + 2x4) + (4+ 2x+ 3x2 + x3 + 0x4)

= (1+ 4) + (5+ 2)x+ (−1+ 3)x2 + (4+ 1)x3 + (2+ 0)x4

= 5+ 0x+ 2x2 + 5x3 + 2x4

= 5+ 2x2 + 5x3 + 2x4

To do this computation we use commutativity, associativity and distributivity of the
ring R[x] (these properties follow from Theorem 4.1).
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Let’s consider multiplication in Q[x]. Then

(1− 7x+ x2)(2+ 3x) = 1(2+ 3x) − 7x(2+ 3x) + x2(2+ 3x)

= 1(2) + 1(3x) − 7x(2) − 7x(3x) + x2(2) + x2(3x)

= 2− 11x− 19x2 + 3x2

This multiplication is accomplished by repeated application of distributivity.
These examples generalize. You add polynomials by adding the corresponding coeffi-

cients. Polynomial addition is given by the rule:

(a0 + a1x+ . . .+ anx
n) + (b0 + b1x+ . . .+ bnx

n) = (a0 + b0) + (a1 + b1)x+ . . .+ (an + bn)x
n

(8)

Polynomial multiplication uses the distributive laws and collecting like powers of x.
Polynomial multiplication is given by the rule:

(a0 + a1x+ a2x
2 + . . .+ anx

n)(b0 + b1x+ b2x
2 + . . . bmx

m) (9)

= a0b0 + (a0b1 + a1b0)x+ (a0b2 + a1b1 + a2b0)x
2 + . . .+ anbmx

n+m (10)

For each k > 0, the coefficient of xk in the product is given by the formula

a0bk + a1bk−1 + . . .+ ak−1b1 + akb0 =

k∑
i=0

aibk−i

ai = 0R if i > n and bj = 0R if j > m.
It is straightforward from this description of multiplication in R[x] that if R is commu-

tative then so is R[x]. Why?

Definition 4.4. Let f(x) = a0 + a1x+ a2x
2 + . . .+ anx

n ∈ R[x] with an 6= 0R. Then an is
called the leading coefficient of f(x). The degree of f(x) is the integer n, denoted deg f(x)
or deg f, i.e. deg f is the largest exponent of x that appears with a nonzero coefficient,
and this coefficient is the leading coefficient.

Let f(x) = 3− x+ 4x2 − 7x3 ∈ R[x]. What is deg f? deg f = 3. What is the leading
coefficient? −7.

What is deg(3+ 5x)? deg(3+ 5x) = 1. deg(x12) = 12.14

Remark 4.5. The ring R (the coefficients) is a subring of the polynomial ring R[x]. The elements
of R can be considered as polynomials in R[x] using the map R→ R[x] given by

R 3 a 7→ ax0 ∈ R[x]

In fact, the map a 7→ ax0 is a monomorphism of rings (why?).
The polynomials of degree 0 in R[x] are precisely the nonzero constant polynomials. The constant

polynomial 0R does not have a degree (no power of x appears with nonzero coefficient).

14One way to try to think about degree is as a function. However, as mentioned in class since deg(0R)
is undefined since no power of x appears with nonzero coefficient. To try to set up degree as a function it
would be of the form deg : R[x]\{0R}→N where R[x]\{0R} is the set of polynomials with coefficients in R
with 0R removed.
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Remark 4.6. There is some ambiguity in the use of notation here (and you will find this ambiguity
present in BH): a may refer to either a ∈ R or the constant polynomial a = ax0 ∈ R[x]. This
happens quite often with 0R - this may refer to the zero polynomial in R[x] or the zero element in
R. From the context, it should always be clear which is meant.

The following theorem will be our workhorse for this section!

Theorem 4.7. If R is an integral domain with f(x),g(x) nonzero polynomials in R[x], then

deg[f(x)g(x)] = deg f(x) + degg(x)

Proof. Assume f(x) = a0+a1x+a2x2+ . . . anxn and g(x) = b0+b1x+b2x2+ . . .+bmxm
with an 6= 0R and bm 6= 0R, so that deg f = n and degg = m. Then

f(x)g(x) = a0b0 + (a0b1 + a1b0)x+ . . .+ anbmx
n+m

The largest exponent of x that may have a nonzero coefficient is n +m. We have
anbm 6= 0R since R is an integral domain and an 6= 0R and bm 6= 0R. Therefore f(x)g(x) is
nonzero (therefore degree is defined) and deg[f(x)g(x)] = n+m = deg f(x) + degg(x).

�

We now list many corollaries that this theorem will give us.

Corollary 4.8. If R is an integral domain, then so is R[x].

Proof. Since R is commutative we argued that R[x] must be commutative. Why must R[x]
have an identity? Is 1R an identity?

The proof of Theorem 4.7 shows that the product of nonzero polynomials in R[x] is
nonzero. Therefore, R[x] is an integral domain.

�

We also saw from the proof of Theorem 4.7 that the following holds:

Corollary 4.9. Let R be a ring. If f(x),g(x) and f(x)g(x) are nonzero in R[x], then

deg[f(x)g(x)] 6 deg f(x) + degg(x)

Proof. The following equality (where f,g are defined above) holds in any ring

f(x)g(x) = a0b0 + (a0b1 + a1b0)x+ . . .+ anbmx
n+m

�

Let’s work some examples. Consider Z6[x]. (Is Z6 an integral domain?) Let f(x) = 2x4

and g(x) = 5x. Then f(x)g(x) = (2x4)(5x) = 4x5. Thus deg[fg] = deg f+ degg.
However, if g(x) = 1+ 3x2 then

f(x)g(x) = 2x4(1+ 3x2) = 2x4 + 2(3x6) = 2x4 + 0x6 = 2x4

which has degree 4. An easy computation shows that deg f + degg = 6. Thus the
inequality below is strict

deg fg < deg f+ degg

Corollary 4.10. Let R be an integral domain and f(x) ∈ R[x]. Then f(x) is a unit in R[x] if and
only if f(x) is a constant polynomial that is a unit in R. In particular, if F is a field, the units in
F[x] are the nonzero constants in F.
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Proof. First assume that f(x) is a unit in R[x]. Then f(x)g(x) = 1R for some g(x) = 1R.
Since R is integral domain, by Theorem 4.7 we have

deg f+ degg = deg[fg] = deg 1R = 0

Since the degrees are nonnegative integers, we must have that deg f = 0 and degg = 0.
Therefore f(x),g(x) are constant polynomials, i.e. elements of R. Since f(x)g(x) = 1R we
have that f(x) is a unit in R.

Now assume that f(x) is a constant polynomial that is a unit in R, i.e. f(x) = b with
b ∈ R a unit. Let h(x) = b−1. Then f(x)h(x) = bb−1 = 1R = b−1b = h(x)f(x). Therefore
f(x) is a unit in R[x].

The last statement follows as every nonzero element of a ∈ F is a unit when F is a field.
Thus a(x) is a unit.

�

Let’s apply the Corollary 4.10. What do we know about the units in Z[x]? The only
units in Z are ±1, thus only units in Z[x] are 1,−1. The units in R[x], Q[x], C[x] are all
nonzero constants since R, Q, C are fields.

As we’ve seen, polynomials over Zn are more complicated. Consider f(x) = 5x+ 1 in
Z25[x]. (5x+ 1)(20x+ 1) = 100x2 + 25x+ 1 = 0x2 + 0x+ 1 = 1.
x2+ 1 is not a perfect square in Z[x]. However, it is a perfect square in Z2[x], as in Z2[x]

we can compute
(x+ 1)(x+ 1) = x2 + 2x+ 1 = x2 + 1

4.1.3. Evaluation homomorphism. There is an important homomorphism for polynomial
rings. Let ϕ : R[x]→ R be the map defined by

R[x] 3 f(x) 7→ f(0) ∈ R
This is called the evaluation map.

Let’s consider a specific example. Consider the evaluation map ϕ : Q[x] → Q defined
byϕ(f(x)) = f(0). Let f(x) ∈ Q[x] with f(x) = a0+a1x1+ . . .+anxn. ϕ(f(x)) = f(0) = a0.
Therefore ϕ maps any polynomial f(x) to its constant term. It’s easy to see that this is
a homomorphism since the constant term of the sum of two polynomials is the sum
of their constant terms and the constant terms of the product two polynomials is the
product of their constant terms (we verified this in Eqn. 8,9). The fiber above any a ∈ Q

is the set of polynomials with a as their constant term. kerϕ consists of the polynomials
with constant term 0.

Remark 4.11. The evaluation map appears in problem 18 in 4.1 of BH.

Remark 4.12. The evaluation map may be thought of as a projection from a polynomial onto its
constant term. Consider the map φ : R[x] → R given by a0 + a1x+ . . .+ anxn 7→ a1 i.e. a
projection onto the coefficient of x1. Is φ a homomorphism?

4.2. Division Algorithm in F[x]. In this section we consider F[x] where F is some field.
Just as we had division in Z we also have division in F[x].

Theorem 4.13. Let F be a field and f(x),g(x) ∈ F[x] with g(x) 6= 0F. Then there exist unique
polynomials q(x) and r(x) such that

f(x) = g(x)q(x) + r(x) and either r(x) = 0F or deg r(x) < degg(x)
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Proof. We will skip this proof. However it may be found as Theorem 4.6 in BH page
91. �

Can you restate the Division Algorithm for Z and draw the parallels between the two?
We shall divide f(x) = 3x5 + 2x4 + 2x3 + 4x2 + x− 2 and g(x) = 2x3 + 1.

Divisibility in F[x]

In this section F always denotes a field. We now port many of the results in Chapter
1.2 on divisibility in Z.

Definition 4.14. Let F be a field and a(x),b(x) ∈ F[x] with b(x) nonzero. We say that
b(x) divides a(x) and write b(x)|a(x) if a(x) = b(x)h(x) for some h(x) ∈ F[x]. We also
say that b(x) is a factor of a(x).

Let’s consider an example. Consider Q[x]. Let f(x) = 6x2 − x− 2. Then (2x+ 1)|f(x) in
Q[x] since (2x+ 1)(3x− 2) = 6x2 − x− 2.

Notice that every constant multiple of 2x+ 1 also divides f(x). For instance 5(2x+ 1) =
10x+ 5 divides f as 5(2x+ 1)

[
1
5(3x− 2)

]
= 6x2 − x− 2

This leads us to the next result.

Theorem 4.15. Let F be a field and a(x),b(x) ∈ F[x] with b(x) nonzero.
(1) If b(x) divides a(x), then cb(x) divides a(x) for each nonzero c ∈ F
(2) Every divisor of a(x) has degree less than or equal to dega(x).

Proof. (1) If b(x)|a(x), then a(x) = b(x)h(x) for some h(x) ∈ F[x]. Thus

a(x) = 1Fb(x)h(x) = cc
−1b(x)h(x) = cb(x)[c−1h(x)]

Therefore cb(x)|a(x).
(2) Suppose b(x)|a(x). Then a(x) = b(x)h(x). Thus

dega(x) = degb(x)h(x) 6 degb(x) + degh(x)

Since degrees are nonnegative we must have 0 6 degb(x) 6 dega(x)
�

We learned about gcd previously in Z. We also have a notion of greatest common
divisor of two polynomials a(x),b(x) ∈ F[x]. This should be a polynomial of highest
degree that divides both of them. However, this is not necessarily unique, as any constant
multiple is also a divisor by Theorem 4.15 Part (1).

We want the gcd to be unique (in fact we need it to be unique in order to speak about
the greatest common divisor). One way to guarantee uniqueness is to require that a gcd
be monic. f(x) ∈ F[x] is monic if its leading coefficient is 1F.

Definition 4.16. Let F be a field and a(x),b(x) ∈ F[x], not both zero. The greatest common
divisor of a(x) and b(x) is the monic polynomial of highest degree that divides a(x) and
b(x). Formally, d(x) is the gcd of a(x),b(x) provided that d(x) is monic and

(1) d(x)|a(x) and d(x)|b(x)
(2) If c(x)|a(x) and c(x)|b(x) then deg c(x) 6 degd(x)
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Any two polynomials a(x),b(x) have at least one monic common divisor, namely 1F.
Since the degree of a common divisor of a(x) and b(x) cannot exceed the dega(x) or
degb(x) there must be at least one common monic (we will see from Bezout’s theorem
for polynomials below that there is in fact only one).

Let’s do an example. Let a(x) = 2x4 + 5x3 − 5x− 2 and b(x) = 2x3 − 3x2 − 2x in Q[x].
We have the factorizations

a(x) = (2x+ 1)(x+ 2)(x+ 1)(x− 1)

b(x) = (2x+ 1)(x− 2)x

2x+ 1 is a common divisor, and of highest degree. Therefore in this case the monic
1
2(2x+ 1) = x+

1
2 is the gcd.

Theorem 4.17 (Bezout for Polynomials). Let F be a field and a(x),b(x) ∈ F[x], not both zero.
Then there is a unique greatest common divisor d(x) of a(x) and b(x). Furthermore, there are
(not necessarily unique) polynomials u(x) and v(x) such that d(x) = a(x)u(x) + b(x)v(x)

Proof. We’ll skip this proof also. Note that it is appears as Theorem 4.8 in BH. �

Corollary 4.18. Let F be a field and a(x),b(x) ∈ F[x], not both zero. A monic polynomial
d(x) ∈ F[x] is the greatest common divisor of a(x) and b(x) if and only if d(x) satisfies these
conditions:

(1) d(x)|a(x) and d(x)|b(x)
(2) if c(x)|a(x) and c(x)|b(x) then c(x)|d(x)

Proof. Let d(x) be the gcd. Then d(x)|a(x),b(x) by definition. If c(x)|a(x),b(x) then
a(x) = u(x)c(x) and b(x) = v(x)c(x). By Bezout we have d(x) = u ′(x)a(x) + v ′(x)b(x).
Thus d(x) = u ′(x)u(x)c(x) + v ′(x)v(x)c(x) = c(x)[u ′(x)u(x) + v ′(x)v(x)].

Now assume that d(x) has the properties. We now wish to show d(x) is gcd. We have
d(x) is monic and d|a(x),b(x). Furthermore if c(x)|a(x),b(x) then d(x) = u(x)c(x). Thus
degd(x) = degu(x)c(x) = degu(x) + deg c(x). Thus degd(x) > deg c(x).

�

Just as in the integers, f(x) and g(x) are said to be relatively prime if gcd(f,g) = 1F.

Proposition 4.19. Let F be a field and a(x),b(x) ∈ F[x]. If a(x)|b(x)c(x) and a(x) and b(x)
are relatively prime, then a(x)|c(x).

Proof. By hypothesis b(x)c(x) = k(x)a(x). Furthermore by Bezout we have

1F = u(x)a(x) + v(x)b(x)

Multiply both sides by c(x) to get

c(x) = c(x)[u(x)a(x)+v(x)b(x)] = c(x)u(x)a(x)+v(x)[b(x)c(x)] = c(x)u(x)a(x)+v(x)k(x)a(x)

Therefore we have
c(x) = a(x)[u(x)c(x) + v(x)k(x)]

�
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5. Irreducibles and Unique Factorization

Let F be a field.
We’re going to develop a notion of what it means for a polynomial f(x) ∈ F[x] to be

‘prime’. We’re going to call this ‘irreducible’.
Recall that a nonzero p ∈ Z is prime if p 6= ±1 and the only divisors of p are ±1 and
±p, i.e. p = (±p)(±1)

Here’s a more general notion. Let R be a commutative ring with identity. a ∈ R is said
be an associate of b ∈ R if a = bu for some unit u ∈ R. In this case b is an associate of a
since b = au−1.

In the ring Z the only associates of an integer n are n,−n, since the only units are ±1.
Now from Corollary 4.10 the units in F[x] are the nonzero constants. Therefore f(x) is

an associate of g(x) in F[x] if and only if f(x) = cg(x) for some nonzero c ∈ F.
Going back to the definition of prime, we have that p is prime if its only divisors are
±1 (the units) and ±p (the associates). Therefore we’ll make the following definition for
F[x]:

Definition 5.1. Let F be a field. A nonconstant polynomial p(x) ∈ F[x] is said to be
irreducible if its only divisors are its associates and the nonzero constant polynomials
(units). A nonconstant polynomial that is not irreducible is called reducible.

As mentioned in BH, we could just as well use the word ‘prime’ instead of ‘irreducible’.
‘Irreducible’ is customary for polynomials. However, both of these words express the
same concept: an ‘atomistic’ behavior. Irreducible/prime objects cannot be expressed in
simpler terms.

Let’s look at a concrete example. We show that polynomial g(x) = x+ 2 is irreducible in
Q[x]. We know that since Q is a field (and in particular an integral domain) we have that
divisors of g(x) must have degree 0 or 1. If f(x)|x+ 2 then f(x)a(x) = g(x). If deg f(x) = 0
then f(x) is a nonzero constant. If deg f(x) = 1 then degg(x) = 0, so g(x) = c. Thus
c−1(x+ 2) = f(x) and f(x) is an associate of g(x). Therefore g is irreducible. A general
argument proceeds along similar lines, and shows that every polynomial of degree 1 in
F[x] is irreducible in F[x].

Theorem 5.2. Let F be a field. A nonzero polynomial f(x) is reducible in F[x] if and only if f(x)
can be written as the product of two polynomials of lower degree.

Proof. We’ll first do ( =⇒ ). Assume that f(x) is nonzero and reducible. Then f(x) has
a divisor g(x) and g(x) is not an associate and g(x) is not a nonzero constant. We can
write f(x) = g(x)h(x). If degg = deg f then since degg = deg f = deggh = deg+degh.
We must have that degh = 0. If degh = deg f then degg = 0 by a similar argument.

If degg = 0, then g(x) is a nonzero constant. If degh = 0 then h is a nonzero constant
and thus g(x) is an associate. In either case our hypothesis is violated. Thus degg <
deg f and degh < deg f.

Now we’ll do ( ⇐= ). Assume that f(x) can be written as the product of two polyno-
mials of lower degree, i.e. f(x) = g(x)h(x). We have the equality deg f(x) = degg(x) +
degh(x). If degg = 0, this forces degh = deg f, contradicting our hypothesis. Thus g
cannot be a nonzero constant. If g is an associate, then degg = deg f, another contradic-
tion. There g(x) is a divisor that is neither a nonzero constant nor an associate. �
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Remark 5.3. The concept of reducibility depends on the particular polynomial ring. Notice that
in C[x] we have x2 + 1 = (x+ i)(x− i). Therefore x2 + 1 is reducible. However in Q[x] one can
show that x2 + 1 is irreducible.

Theorem 5.4. Let F be a field and p(x) ∈ F[x] be a nonconstant polynomial. Then the following
are equivalent:

(1) p(x) is irreducible
(2) If b(x), c(x) are polynomials such that p(x)|b(x)c(x) then p(x)|b(x) or p(x)|c(x)
(3) If r(x) and s(x) are any polynomials such that p(x) = r(x)s(x) then r(x) or s(x) is a

nonzero constant polynomial

Proof. (1) We show (1) =⇒ (2). Let d(x) = (p(x),b(x)). Then d(x) = 1F or d(x) =
cp(x) since p(x) is irreducible. If d(x) = cp(x) then p(x)|b(x) by definition of gcd.
If d(x) = 1F, then p(x)|c(x) by Proposition 4.19.

(2) We show (2) =⇒ (3). Assume that p(x) = r(x)s(x). By our property we have
that p(x)|r(x) or p(x)|s(x). If p(x)|r(x) then we have degp(x) = deg r(x)+deg s(x)
and degp(x) 6 deg r(x). Thus deg r(x) + deg s(x) = degp(x) 6 deg r(x). This
implies that deg s(x) = 0, i.e. s(x) is a nonzero constant polynomial.

(3) We show that p(x) is irreducible. Write p(x) = r(x)s(x). Then r(x) or s(x) is a
nonzero constant polynomial. Without loss of generality, assume that r(x) = c ∈
F. Then r(x) is a unit. Thus s(x) is an associate of p(x). Therefore any factor is an
associate or a unit, so p(x) is irreducible.

�

Corollary 5.5. Let F be a field and p(x) an irreducible polynomial in F[x]. If p(x)|a1(x)a2(x) . . . an(x),
then p(x) divides at least one of the ai(x).

Proof. We use Theorem 5.4. Since p(x) is irreducible either p(x)|a1(x) or p(x)|a2(x) . . . an(x).
If p(x) 6 |a1(x) then repeat the argument on a2(x) . . . an(x).

�

Theorem 5.6. Let F be a field. Every nonconstant polynomial f(x) in F[x] is the product of
irreducible polynomials in F[x]. This factorization is unique in the following sense: if

f(x) = p1p2(x) · · ·pt(x) and f(x) = q1(x)q2(x) · · ·qs(x)

with each pi(x) and qj(x) irreducible, then r = s. Without loss of generality (meaning up to
some relabeling) pi(x) is an associate of qi(x)

Proof. We’ll repeat basically the same argument as Theorem 1.7 in BH.
Let S be the set of all nonconstant polynomials that are not the product of irreducibles.

Let T = {deg f(x) : f(x) ∈ S}. We will use proof by contradiction to show that S is
empty. Suppose that S is nonempty. Then T is nonempty. T consists of nonnegative
integers (why?), thus must have a least element n ∈ T by well-ordering principle. This
must correspond to some f(x) ∈ S with deg f(x) = n. Since f(x) ∈ S, S is not irre-
ducible, thus f(x) = a(x)b(x) where a(x),b(x) are neither units nor associates. Thus
0 < dega(x), degb(x) < deg f(x). This implies a(x),b(x) 6∈ S. Therefore they are the
product of irreducibles, so f(x) is the product of irreducibles. This is a contradiction.

Uniqueness follows along similar lines, as can be found in Theorem 4.14.
�
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5.1. Polynomial Functions, Roots, and Reducibility. We have considered the parallels
between F[x] and Z - namely, irreducibles/primes, the division algorithm and factoriza-
tions.

We didn’t cover primality testing in Z, however we will do more in F[x] as we have
more structure.

In particular, notice that every polynomial in F[x] induces a function from F to F. The
properties of this function (in particular, its roots) are related to reducibility of the poly-
nomial.

Associated with each polynomial anxn + . . .+ a1x+ a0 ∈ F[x] is a function f : F → F
given by f(r) = anr

n + . . .+ a1r+ a0. This can be thought of as plugging in values of F
into the polynomial.

Here are some examples. Consider the polynomial x2+ 5x+ 3 ∈ R[x]. This polynomial
induces a function f : R→ R given by f(r) = r2 + 5r+ 3.

Consider the polynomial x4 + x+ 1 ∈ Z3[x]. This induces the function f : Z3 → Z3

given by f(r) = r4+ r+ 1. Since Z3 is small, we can go ahead and evaluate all the values
of f. Namely,

f(0) = 04 + 0+ 1 = 1, f(1) = 14 + 1+ 1 = 0, f(2) = 16+ 2+ 1 = 1

The polynomial x3 + x2 + 1 ∈ Z3[x] induces the function g : Z3 → Z3 given by

g(0) = 0+ 0+ 1, g(1) = 13 + 12 + 1 = 0, g(2) = 8+ 4+ 1 = 1

Notice that f,g are the same function induced on Z3, even though they are induced by
different polynomials in Z3[x].

Definition 5.7. Let R be a commutative ring and f(x) ∈ R[x]. An element a ∈ R is a root for
the polynomial f(x) if f(a) = 0R, i.e. the induced function f : R→ R maps a to 0R.

Example: the polynomial x2 + 1 ∈ R[x] has no roots in R. However, x2 + 1 ∈ C[x] has
roots in C, namely i,−i.

Theorem 5.8 (The Remainder Theorem). Let F be a field. Let f(x) ∈ F[x] and a ∈ F. The
remainder when f(x) is divided by the polynomial x− a is the polynomial f(a).

Let’s consider some example. To find the remainder when f(x) = x79 + 3x24 + 5 is
divided by x− 1. We apply the remainder theorem with a = 1. We have

f(1) = 179 + 3(1)24 + 5 = 1+ 3+ 5 = 9

How about the remainder when f(x) = 3x4 − 8x2 + 11x+ 1 is divided by x+ 2? (Apply
the remainder theorem carefully, it strictly says x− a). Thus we put the divisor in the
form x− (−2) and compute f(−2) = 48− 32− 22+ 1 = −5

Proof. By the Division Algorithm for Polynomials, f(x) = (x−a)q(x)+ r(x) where r(x) =
0F or deg r(x) < 1. Notice that if deg r(x) < 1 then deg r = 0. Therefore in either case
r(x) is a constant polynomial, i.e. r(x) = c for some c ∈ F. Thus f(x) = (x− a) + c. We
plug in a to get f(a) = (a− a) + c implying c = f(a).

�

Theorem 5.9 (The Factor Theorem). Let F be a field. Let f(x) ∈ F[x] and a ∈ F. Then a is a
root of the polynomial f(x) if and only if x− a is a factor of f(x) in F[x].
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Proof. We first assume that a is a root of f(x). This means that f(a) = 0F. Let’s apply the
Division algorithm:

f(x) = (x− a)q(x) + r(x)

f(x) = (x− a)q(x) + f(a) here we’re using Theorem 5.8
f(x) = (x− a)q(x) + 0F since f(a) is a root

Thus (x− a)|f(x).
Now assume that x−a is a factor for f(x). We want to show that a is a root. Since x−a

is a factor we can write f(x) = (x− a)q(x). Plug in a we have f(a) = (a− a)q(a) = 0F.
Thus a is a root.

�

Here’s an example application of the theorem. Let’s show that

f(x) = x4 − x3 + 2x2 + 2x− 4

is reducible in Q[x]. Notice that 1 is a root since f(1) = 1− 1+ 2+ 2− 4. Invoke Theo-
rem 5.9 to get that x− 1 is a divisor.

This gives us a very simple test for reducibility: if you can find a root in F for f(x) ∈ F[x]
then f(x) is reducible.

Corollary 5.10. Let F be a field and f(x) a nonzero polynomial of degree n in F[x]. Then f(x)
has at most n roots in F.

Proof. If f(x) has a root in F, then by the factor theorem we know x− a is a divisor. Thus
f(x) = (x− a)g(x). We have that deg f = 1+ degg(x). Therefore degg(x) = n− 1. We
can now repeat the argument on g(x). �

Corollary 5.11. Let F be a field and f(x) ∈ F[x] with deg f(x) > 2. If f(x) is irreducible in F[x]
then f(x) has no roots in F.

Proof. If f(x) is irreducible. If a ∈ F was a root, then x− a would be a factor by Theo-
rem 5.9. However, f(x) is irreducible. Therefore f(x) has no roots in F. �

The converse of this corollary is false. Why? The converse says ‘if f(x) has no roots
then f(x) is irreducible’. Take some product of irreducible polynomials: (x2+1)(x2+1) =
4x2 + 2x+ 1 is reducible in Q[x] but has no roots in Q.

On the other hand, the converse is true for degrees 2, 3.

Corollary 5.12. Let F be a field and let f(x) ∈ F[x] be a polynomial of degree 2 or 3. Then f(x)
is irreducible in F[x] if and only if f(x) has no roots in F.

Proof. Assume that f(x) is irreducible. Then as we showed, f has no roots in F.
Now assume that f(x) has no roots in F. Suppose that f is reducible. Then we can write
f(x) = a(x)b(x) for a(x),b(x) ∈ F[x] with 0 < dega(x), degb(x) 6 deg f. We have that
deg f = dega(x)b(x) = dega(x) + degb(x). If deg f = 2, then dega(x) = degb(x) = 1.
This implies a(x) is of the form cx+ d for some c,d ∈ F. Therefore −c−1d is a root. If
deg f(x) = 3 then without loss of generality dega(x) = 1 and degb(x) = 2. Therefore
we again have that a(x) has form cx+ d for c,d ∈ F, which has root −c−1d. This is a
contradiction, therefore f is irreducible.

�
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Let’s do another example. Consider f(x) = x3+ x+ 1 in Z5[x]. Is f(x) irreducible? Since
deg f(x) = 3, we can apply Corollary 5.12. We compute

f(0) = 1, f(1) = 3, f(2) = 1, f(3) = 1, f(4) = 4

Therefore by Corollary 5.12 f(x) is irreducible in Z5[x].

Corollary 5.13. Let F be an infinite field and f(x),g(x) ∈ F[x]. Then f(x) and g(x) induce the
same function from F to F if and only if f(x) = g(x) in F[x].

Proof. Suppose that f(x) and g(x) induce the same function from F to F. Then f(a) = g(a),
so f(a) − g(a) = 0F for all a ∈ F. Therefore every element of F is a root of the polynomial
f(x) − g(x). By hypothesis F is infinite. However, if f(x) − g(x) is nonzero then by
Corollary 5.10 we know it can have at most deg f(x) roots. Therefore f(x) − g(x) = 0F.

If f(x) = g(x) in F[x], then they induce the same function from F to F.
�
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5. Congruence in F[x]

A good stock of examples, as large as possible, is indispensable for a thorough
understanding of any concept, and when I want to learn something new, I make
it my first job to build one.

– Paul Halmos15

The ideas of congruence in Z that we explored in Chapter 2 carry over to the polyno-
mial ring F[x]. In this section we continue building a ‘stock of examples’ for the ideas of
congruence and quotients. In the next chapter we will abstract these to general rings.

5.1. Congruence. We’ve already seen that F[x] obeys the same divisibility properties
that Z had. It is not surprising then that many of the ideas of congruence can be ported
directly.

Definition 5.1. Let F be a field and f(x),g(x),p(x) ∈ F[x] with p(x) nonzero. Then f(x) is
congruence to g(x) modulo p(x) written f(x) ≡ g(x) mod p(x) provided that p(x) divides
f(x) − g(x).

Remark 5.2. Compare this definition with the definition of congruence class in Zn!

Here’s an example. Consider Q[x].

x2 + x+ 1 ≡ x+ 2 mod x+ 1

since
x2 + x+ 1− (x+ 2) = x2 − 1 = (x− 1)(x+ 1)

Theorem 5.3. Let F be a field and p(x) be a nonzero polynomial in F[x]. Then the relation of
congruence modulo p(x) is:

(1) Reflexive: f(x) ≡ f(x) mod p(x).
(2) Symmetric: if f(x) ≡ g(x) mod p(x) then g(x) ≡ f(x) mod p(x)
(3) Transitive: if f(x) ≡ g(x) mod p(x) and g(x) ≡ h(x) mod p(x) then f ≡ h(x)

mod p(x)

Proof. (1) f(x) − f(x) = 0Fp(x) Thus f(x) ≡ f(x) mod p(x)
(2) If f(x) − g(x) = q(x)p(x). Then g(x) − f(x) = −(f(x) − g(x)) = −(q(x)p(x)) =

(−q(x))p(x)
(3) If f(x) − g(x) = q(x)p(x) and g(x) − h(x) = r(x)p(x) then

f(x) − h(x) = f(x) − g(x) + g(x) − h(x) = q(x)p(x) + r(x)p(x) = (q(x) + r(x))p(x)

�

Theorem 5.4. Let F be a field and p(x) ∈ F[x] a nonzero polynomial. If f(x) ≡ g(x) mod p(x)
and h(x) ≡ k(x) mod p(x) then

(1) f(x) + h(x) ≡ g(x) + k(x) mod p(x)
(2) f(x)h(x) ≡ g(x)k(x) mod p(x)

This proof follows the proof of Theorem 2.2 in BH.

Proof. By hypothesis we have f(x) − g(x) = a(x)p(x) and h(x) − k(x) = b(x)p(x).
15Quoted in Gallian, J. (2016). Contemporary abstract algebra. Cengage Learning.
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(1) We compute

f(x)−h(x)− [g(x)−k(x)] = [f(x)−g(x)]− [h(x)−k(x)] = a(x)p(x)−b(x)p(x) = [a(x)−b(x)]p(x)

(2) We compute

f(x)h(x) − g(x)k(x) = f(x)h(x) − f(x)k(x) + f(x)k(x) − g(x)k(x)

= f(x)[h(x) − k(x)] + [f(x) − g(x)]k(x)

= f(x)b(x)p(x) + a(x)p(x)k(x) = [f(x)b(x) + a(x)p(x)]k(x)

�

Remark 5.5. Again, notice the familiar trick of adding zero. This is very prominent in algebra.

Definition 5.6. Let F be a field and f(x),p(x) ∈ F[x] with p(x) nonzero. The congruence class
of f(x) modulo p(x) is denoted [f(x)] and consists of all polynomials in F[x] that are congruent
to f(x) modulo p(x), that is

[f(x)] = {g(x) : g(x) ∈ F[x] and g(x) ≡ f(x) mod p(x)}

We can characterize [f(x)] with a quick computation. Since g(x) ≡ f(x) mod p(x)
means g(x) − f(x) = k(x)p(x) we have g(x) = f(x) + k(x)p(x) thus

[f(x)] = {g(x) : g(x) ≡ f(x) mod p(x)}
= {f(x) + k(x)p(x) : k(x) ∈ F[x]}

Remark 5.7. Compare this congruence class of polynomials to the congruence class of an integer
[a]n = {a+ kn : k ∈ Z}!

Let’s work an example. Consider congruence mod x2+ 1 in R[x]. The congruence class
of 2x+ 1 is the set

[2x+ 1] = {(2x+ 1) + k(x)(x2 + 1) : k(x) ∈ R[x]}

Theorem 5.8. f(x) ≡ g(x) mod p(x) if and only if [f(x)] = [g(x)]

Proof. We first show ( =⇒ ). Let f(x) − g(x) = a(x)p(x). Let h(x) ∈ [f(x)]. We want
to show h(x) ∈ [g(x)]. We have h(x) = f(x) + k(x)p(x). Then h(x) = g(x) + a(x)p(x) +
k(x)p(x) = g(x) + [a(x) + k(x)]p(x). Thus h(x) ∈ [g(x)]. Since congruence modulo p is
symmetric, we have g(x) ≡ f(x) mod p(x), and we can repeat the argument.

Now assume [f(x)] = [g(x)]. Since f(x) ∈ [f(x)] = [g(x)] we have f(x) = g(x) + k(x)p(x).
Thus f(x) − g(x) = k(x)p(x) and f(x) ≡ g(x) mod p(x).

�

Corollary 5.9. Either [f(x)]∩ [g(x)] = ∅ or [f(x)] = [g(x)].

Proof. If [f(x)] = [g(x)] = ∅ then we’re done. Otherwise there exists some a(x) ∈
[f(x)] ∩ [g(x)]. We first show [f(x)] ⊂ [g(x)]. Let h(x) ∈ [f(x)]. We want to show h(x) ∈
[g(x)]. h(x) ≡ f(x) mod p(x), f(x) ≡ a(x) mod p(x) (by symmetry) and a(x) ≡ g(x)
mod p(x). Therefore by transitivity we have h(x) ≡ g(x) mod p(x). We can repeat a
similar argument for [g(x)] ⊂ [f(x)]. �

Recall that Zn has precisely n elements, namely [0], [1], . . . , [n− 1]. There is a class for
each remainder under division by n. We have the Division Algorithm in F[x]. In F[x] the
possible remainders under division by a polynomial of degree n are all the polynomials
of degree less than n and 0F. Therefore we have:
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Corollary 5.10. Let F be a field and p(x) ∈ F[x] with degp(x) = n ∈ Z

(1) If f(x) ∈ F[x] and r(x) is the remainder when f(x) is divided by p(x) then [f(x)] = [r(x)]
(2) Let

S = {f(x) ∈ F[x] : deg f(x) < n}∪ {0F}
i.e. the set consisting of the zero polynomial and all the polynomials of degree less than n
in F[x]. If f(x) ∈ F[x] then [f(x)] = [q(x)] for some q(x) ∈ S and the congruence classes
of different polynomials in S are distinct.

Proof. (1) By the division algorithm for polynomials, we have f(x) = q(x)p(x) + r(x)
where r(x) = 0F or deg r(x) < n. Thus f(x) − r(x) = q(x)p(x) and f(x) ≡ r(x)
mod p(x). Therefore [f(x)] = [r(x)] by Theorem 5.8.

(2) By part (1), [f(x)] = [r(x)] and r(x) = 0F or deg r(x) < n. Thus r(x) ∈ S. For
a(x),b(x) ∈ S we have deg[a(x) − b(x)] < n, therefore p(x) cannot divide a(x) −
b(x) and a(x) 6≡ b(x) mod p(x). Thus they are distinct by Theorem 5.8.

�

Let’s consider some more examples. Consider congruence modulo x2 + 1 in R[x]. As
we’ve said, there is a congruence class for 0F and for f(x) where deg f < 2. There-
fore the congruence classes must be of the form ax+ b a,b ∈ R (possibly zero). Thus
R[x]/(x2 + 1) consists of infinitely many distinct congruence classes. Corollary 5.10 says
that [ax+ b] = [cx+ d] if and only if ax+ b = cx+ d. By the definition of equivalence
in polynomials, this means that a = c and b = d (the coefficients are equal). Therefore
every element of R[x]/(x2 + 1) can be uniquely written as [ax+ b].

Consider congruence modulo x2 + x+ 1 in Z2[x]. The possible remainders on division
by x2 + x+ 1 are polynomials of the form ax+ b with a,b ∈ Z2[x]. Thus there are four
polynomials:

0F, 1, x, x+ 1

Thus Z2[x]/(x
2 + x+ 1) consists of four congruence classes [0], [1], [x], [x+ 1].

Congruence Class Arithmetic

Congruence in the integers led to the construction of Zn and modular arithmetic. Sim-
ilarly, congruence in F[x] will produce new ‘quotient rings’.

Theorem 5.11. Let F be a field and p(x) be a nonconstant polynomial in F[x]. If [f(x)] = [g(x)]
and [h(x)] = [k(x)] in F[x]/(p(x)) then

[f(x) + h(x)] = [g(x) + k(x)] and [f(x)h(x)] = [g(x)k(x)]

Proof. We have f(x) ≡ g(x) mod p(x) and h(x) ≡ k(x) mod p(x). Thus by Theorem 5.11

f(x) + h(x) ≡ g(x) + k(x) mod p(x) and f(x)h(x) ≡ g(x)k(x) mod p(x). Thus [f(x) +
h(x)] = [g(x) + k(x)] and [f(x)h(x)] = [g(x)k(x)]. �

We’ll now define addition and multiplication of congruence classes for polynomials.

Definition 5.12. Let F be a field and p(x) be a nonconstant polynomial in F[x]. Addition and
multiplication in F[x]/(p(x)) are defined by

[f(x)] + [g(x)] = [f(x) + g(x)] [f(x)][g(x)] = [f(x)g(x)]
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Let’s again consider congruence x2 + 1 in R[x].
The sum of the classes [2x+ 1] and [3x+ 5] is the class [2x+ 1] + [3x+ 5] = [5x+ 6].
The product is [2x + 1][3x + 5] = [(2x + 1)(3x + 5] = [6x2 + 13x + 5]. We can divide
6x2 + 13x+ 5 by x2 + 1 to get

6x2 + 13x+ 5 = 6(x2 + 1) + (13x− 1)

6x2 + 13x+ 5− (13x− 1) = 6(x2 + 1)

6x2 + 13x+ 5 ≡ 13x− 1 mod x2 + 1

[6x2 + 13x+ 5] = [13x− 1]

Let’s consider congruence in Z2[x]/(x
2 + x+ 1). We’ve seen that this has four congru-

ence classes, namely [0], [1], [x], [x+ 1]. We can compute the addition and multiplication
tables:


+ [0] [1] [x] [x+ 1]

[0] [0] [1] [x] [x+ 1]
[1] [1] [0] [x+ 1] [x]
[x] [x] [x+ 1] [0] [1]
[x+ 1] [x+ 1] [x] [1] [0]




· [0] [1] [x] [x+ 1]

[0] [0] [0] [0] [0]
[1] [0] [1] [x] [x+ 1]

[x] [0] [x] [x2]=[x+1] [x2 + x]=[1]

[x+ 1] [0] [x+ 1] [x2 + x]=[1] [x2 + 2x+ 1]=[x]


Notice that x2 + x = (x2 + x+ 1) + 1. Thus x2x+ 1 ≡ 1. So [x2 + x] = [1]. We have
x2 = (x2 + x + 1) + (x + 1) thus [x][x] = [x2] = [x + 1]. Furthermore (x + 1)(x + 1) =
x2 + 2x+ 1 = x2 + 1 = (x2 + x+ 1) + x. Thus [x+ 1][x+ 1] = [x2 + 2x+ 1] = [x].

Let’s look at the tables we’ve just computed. We can see that Z2[x]/(x
2 + x+ 1) is a

commutative ring (What’s an easy way to check this? Observe that the tables observe a
symmetry across the diagonal). Furthermore it has a multiplicative identity [1]. Observe
that F∗ = {[0], [1]} is a subring. What familiar ring does this look like? It is isomorphic to
Z2. This is a general result, as we record in the next theorem.

Theorem 5.13. Let F be a field and p(x) be a nonconstant polynomial in F[x]. Then F[x]/(p(x)) is
a commutative ring with identity. Moreover F[x]/(p(x)) contains a subring F∗ that is isomorphic
to F.

Proof. It is fairly straightforward to work out the ring axioms. However, another way to
do this is to write F[x]/(p(x)) as the homomorphic image of another ring. Consider the
map ϕ : F[x]→ F[x]/(p(x)) given by

F[x] 3 f(x) 7→ [f(x)] ∈ F[x]/(p(x))

We have that F[x]/(p(x)) is a set with two operations. If we verify that ϕ is a homomor-
phism then we have that Imϕ = ϕ(F[x]) = F[x]/(p(x)) is a ring (Why?).16 We have this
as a homomorphism since

ϕ(f(x) + g(x)) = [f(x) + g(x))] = [f(x)] + [g(x)] = ϕ(f(x)) +ϕ(g(x))

16This is a slight abuse of definitions. Recall that a homomorphism was defined between two rings.
However, it could as well have been defined with domain a ring and codomain a set equipped with
addition and multiplication
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and
ϕ(f(x)g(x)) = [f(x)g(x)] = [f(x)][g(x)] = ϕ(f(x))ϕ(g(x))

Now consider the map φ : F
i−→ F[x]

ϕ−→ F[x]/(p(x)) given by

a 7→ a+ 0x1 + . . . 7→ [a]

The first map takes a ∈ F to the constant polynomial a ∈ F[x]. The second map is the
one just discussed. To see that φ is injective we compute kerφ. If 0 = φ(a) = [a] then
p(x)|a(x). However as a ∈ F if a 6= 0 then dega = 0 and degp(x) > 1. This is a
contradiction. Thus φ is isomorphic onto its image φ(F). We set F∗ = φ(F).

�

Why think of F as being identified with its image φ(F). In this way, we can think of F
as a subring of F[x]/(p(x)). See Page 132 of BH for additional discussion on this.

Theorem 5.14. Let F be a field and p(x) a nonconstant polynomial in F[x]. If f(x) ∈ F[x] and
(f(x),p(x)) = 1 then [f(x)] is a unit in F[x]/(p(x)).

Proof. If (f(x),p(x)) = 1 then 1F = u(x)f(x) + v(x)p(x) by Bezout’s theorem. Therefore
1F − u(x)f(x) = v(x)p(x). Passing to the congruence class we have [1F] = [u(x)f(x)] =
[u(x)][f(x)]. Thus [f(x)] is a unit. �

The Structure of F[x]/(p(x))

Theorem 5.15. Let F be a field and p(x) a constant polynomial in F[x]. Then the following
statements are equivalent:

(1) p(x) is irreducible in F[x]
(2) F[x]/(p(x)) is a field
(3) F[x]/(p(x)) is an integral domain

Proof. (1) (1) =⇒ (2). We’ve seen that F(x)/(p(x)) is a commutative ring with
identity (Theorem 5.7 in BH). We must show it is a field. Consider [f(x)] 6= 0.
Let’s consider f(x) ∈ F[x]. Since p is irreducible (p(x), f(x)) is 1F or an associate of
p(x). However, it cannot be an associate of p(x) as [f(x)] 6= 0. Thus (p(x), f(x) = 1F
and we invoke Theorem 5.14 to get [f(x)] is a unit.

(2) (2) =⇒ (3). We have already seen that every field is an integral domain in
Theorem 3.8 of BH.

(3) (3) =⇒ (1). Assume p(x) = a(x)b(x) for nonzero a(x),b(x). We want to show
that a(x),b(x) are units or associates. We have that 0 = [p(x)] = [a(x)][b(x)]. Thus
[a(x)] = 0 or [b(x)] = 0 since F[x]/(p(x)) is an integral domain. If [a(x)] = 0. Then
a(x) = a ∈ F and a is a unit. If [b(x)] = 0 then b(x) = b ∈ F and a is an associate.
Thus any divisor is either unit or associate.

�

Let F be a field and p(x) irreducible in F[x]. Let K = F[x]/(p(x)). We’ve considered how
F may be thought of as a subfield of F[x]/(p(x)). That is, F is a subfield of K. One also
says that K is an extension field of F.

Since F ⊂ K, polynomials in F[x] can be considered to have coefficients in the larger
field K. We can ask about the roots of such polynomials in K.
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Let’s take an example. Consider p(x) = x2 + x+ 1 in Z2[x]. p(x) has no roots in Z2[x]
(notice f(1) = f(0) = 1) therefore it is irreducible (Corollary 4.19 in BH). Therefore we
can apply Theorem 5.15 to see that K = Z2[x]/(x

2 + x+ 1) is an extension field of Z2.
Let’s now test for roots in K, for instance [x]. Let’s compute with [x], we see

[x]2 + [x] + 1 = [x+ 1] + [x] + 1 = [1] + [1] = [0]

We are considered the polynomial x2 + x+ 1 as residing in K[x]. We are then taking
elements of K, such as [x], and inputting them into p(x). This is a bit confusing and
is perhaps cleared up by using a different notation. Say, α := [x] ∈ K. Then p(α) =
α2 +α+ 1 = 0. Thus α is a root of p(x) in K[x]. See discussion on Page 136 of BH.

Theorem 5.16. Let F be a field and p(x) ∈ F[x] irreducible. Then F[x]/(p(x)) is an extension
field of F that contains a root of p(x).

Proof. Let K = F[x]/(p(x)). Then K is an extension field of F as we’ve seen. Let p(x) =
anx

n + . . .+ a1x+ a0 with ai ∈ F. Since ai ∈ F we have ai ∈ K. Let α = [x] in K. We can
compute (using our results about congruence class arithmetic)

anα
n + . . .+ a1α+ a0 = an[x]

n + . . .+ a1[x] + a0

= [anx
n + . . . a1x+ a0]

= [p(x)] = 0F

This last equality follows since p(x) ≡ 0 mod p(x). Therefore α ∈ K is a root of p(x).
�

Corollary 5.17. Let F be a field and f(x) ∈ F[x] be nonconstant. Then there is an extension field
of K of F that contains a root of f(x).

Proof. Let p(x) be an irreducible factor of f(x). Thus we can consider K = F[x]/(p(x)).
We have that K contains a root of p(x). Every root of p(x) is a root of f(x), since f(x) =
p(x)g(x). Thus K contains a root of f(x). �

Let’s consider an example. We know that p(x) = x2+ 1 is irreducible in R[x]. Thus p(x)
has a root in R[x]/(x2 + 1), namely α = [x]. Thus α2 = −1. This sounds like the complex
numbers C.

See page 137 in BH for further discussion.
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In this chapter we will generalize the idea of congruence to arbitrary rings. We have
done congruence now in both Z and F[x] - we will axiomatize the idea by writing down
the common properties. This will result in the definition of an ideal.

We will observe that subring is not quite the correct notion for a ‘subobject’ of a ring,
again leading to the development of the idea of ideal. We will prove very powerful struc-
ture theorems (these will also be called isomorphism theorems). This chapter contains
very deep abstract algebra ideas. See this endnote for some meta-mathematics/mathematical
philosophy.1

It is important to discriminate between objects, e.g. rings, and their morphisms (i.e a
function between rings), e.g. ring homomorphism. One then talks of a category of rings
(i.e. the collection of all rings) with morphisms - so the only functions you allow between
rings are ring homomorphisms. More examples of objects include fields, groups17, vec-
tor spaces. Their morphisms are, respectively, ring homomorphisms, group homomor-
phisms and linear maps. The last seventy years of category theory2 have shown that the
morphisms are of much more importance than the objects themselves. Proper ‘subobjects’, e.g.
a subring, should arise somehow through some appropriate morphism. In particular, as
the kernel of some morphism. In this chapter we’ll see that our definition of subring
does not fit this description.18 We’ll introduce the notion of ideal instead, and show that
these do arise as kernels.

6. Ideals and Congruence (and Morphisms)

My [algebraic] methods are really methods of working and thinking; this is why
they have crept in everywhere anonymously.

– Emmy Noether19

Recall that in the ring Z the notation a ≡ b mod 3 means that a− b is divisible 3. Let
I = {0,±3,±6,±9, . . .}.

Then congruence can be characterized as follows:

a ≡ b mod 3 means a− b ∈ I
Observe that I is a subring of Z (closed under subtraction, multiplication).
Furthermore, the product of any integer n ∈ Z is itself a multiple of 3. Thus the subring
I has the property

for k ∈ Z and i ∈ I we have ki ∈ I
This was of course similar to congruence in the polynomial ring. The notation f(x) ≡
g(x) mod (x2− 2) in the polynomial ring implies that f(x) − g(x) is a multiple of x2− 2.
Let

I = {h(x)(x2 − 2) : h(x) ∈ Q[x]}

I is a subring of Q[x] which has the following property:

for k(x) ∈ Q[x] and t(x) ∈ I we have k(x)t(x) ∈ I
17We’ll come to these in Chapter 7

18Can you find a subring that is not a kernel of some homomorphism? On its face may seem like a
hard problem. We’ll may able to do this by the end of this Chapter.

19Letter to H. Hasse (1931). This can be found in Kleiner, I. (2007). A history of abstract algebra. Springer
Science & Business Media.
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Therefore congruence modulo x2 − 2 may be described in terms of I:

f(x) ≡ g(x) mod x2 − 2 means f(x) − g(x) ∈ I

This suggests that congruence in a ring may be defined in terms of certain subrings.

Definition 6.1. Let I ⊂ R be a subring. I is called an ideal If for all r ∈ R and a ∈ I then
ra ∈ I and ar ∈ I.

Remark 6.2. This property is sometimes called the absorption property as the product of any
arbitrary element and ideal element lands by in the ideal (i.e. is absorbed).

Here are two easy examples of ideals: the zero ideal {0R} and the entire ring R.
Consider the ring Z[x]. Let I be the set of polynomials whose constant terms are even

integers, i.e. I = {anx
n + . . .+ 2a0 ∈ Z[x] : ai ∈ Z}. Thus x3 + x+ 6 is in I, but 4x2 + 3 is

not. Why is I an ideal?
We can that I is a subring: How? (hint: is it a kernel?) For any k(x) ∈ Z[x] and
t(x) ∈ Z[x] we have k(x)t(x) ∈ I since the constant term on this product must be even
(this follows from polynomial multiplication).

Let’s do more examples. Let T be the ring of all functions from R to R. Let I = {f ∈ T :
f(2) = 0}. Then I is an ideal. Why?

Here is a nonexample. Consider the subring Z ⊂ Q. Notice Z ⊂ Q is not an ideal. Why?
Consider 1

25. Therefore there are subrings which are not ideals.

Theorem 6.3. A nonempty subset I of a ring R is an ideal if and only if it has these properties:
(1) if a,b ∈ I then a− b ∈ I
(2) if r ∈ R and a ∈ I then ra ∈ I and ar ∈ I

Proof. Every ideal must have these properties. Now assume that I ⊂ R has these proper-
ties. We wish to show that I is an ideal. Then I absorbs products by (2). Furthermore,
(2) implies I is closed under multiplication. We also have that by (1) that I is closed
under subtraction. �

Theorem 6.4. Let R be a commutative ring with identity, c ∈ R. Let I be the set of all multiplies
of c in R, that is, I = {rc : r ∈ R}. Then I is an ideal.

Proof. If r1, r2 ∈ R and r1c, r2c ∈ I, then

r1c− r2c = (r1 − r2)c ∈ I

and

r(r1c) = (rr1)c ∈ I and (r1c)r = rr1c ∈ I

�

An ideal of the form I = {rc : r ∈ R} is called a principal ideal generated by c and is
denoted (c). For example, (3) ⊂ Z is the ideal generated by 3 (all multiples of 3).

In any commutative ring with identity, the principal ideal (1R) is the entire ring since
r = r1R ∈ (1R). The principle refers to the fact that such an ideal is generated by only one
element. Ideals need not be principal.
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Here’s an example. Let I be the set of polynomials in Z[x] with even constant terms.20

We claim that I is not principal. To see this, assume that I was principal, ie. I = (p(x)).
Then since 2 ∈ I we have 2 = r(x)p(x). Thus 0 = deg 2 = deg r(x) + degp(x). Therefore
degp(x) = 0. This implies p(x) = c ∈ 2Z. Since c|2 we have c = ±1. Since x+ 0 ∈ I we
have x = g(x)p(x). This forces degg(x) = 1, thus g(x) = ax+ b. So ±2(ax+ b) = x. This
forces ±2a = 1, with a ∈ Z. This is impossible. Thus I is not principal.

We generalize principal (generated by one element) with the following definition:

Theorem 6.5. Let R be a commutative ring with identity and c1, c2, . . . cn ∈ R. The set I =
{r1c1 + r2c2 + . . .+ rncn : ri ∈ R} is an ideal in R.

Proof. We first show I is a subring. I is nonempty since c1 ∈ I. Let a,b ∈ I. Then a =
r1c1+ . . . rncn,b = s1c1+ . . .+ sncn and a−b = (r1− s1)c1+ . . . (rn− sn)cn ∈ I. We have
ab = (r1c1 + . . .+ rncn)(s1c1 + . . .+ sncn). Using commutativity and distributivity, it is
straightforward that this is in I. Finally let r ∈ R. Then ra = rr1c1 + . . .+ rrncn ∈ I. �

We’ve see congruence in Z and F[x]. Now we define it for an arbitrary ring.

Definition 6.6. Let I ⊂ R be an ideal. Let a,b ∈ R. Then a is congruent to b modulo I,
a ≡ b mod I, if a− b ∈ I.

Let T be the ring of functions R→ R. Let I = {g ∈ T : g(2) = 0}. Consider f(x) = x2 + 6
and h(x) = 5x. Then (f− h)(2) = f(2) − h(2) = 22 + 6− 10 = 0. Thus f− h ∈ I, so f ≡ h
mod I.

We’ll now see that congruence modulo I is an equivalence relation, as we’ve done for
Z and F[x].

Theorem 6.7. Let I be an ideal in R. Then the relation of congruence modulo I is
(1) Reflexive. a ≡ a mod I for every a ∈ R
(2) Symmetric. a ≡ b mod I then b ≡ a mod I.
(3) Transitive. a ≡ b mod I and b ≡ c mod I implies a ≡ c mod I.

Proof. (1) a− a = 0R ∈ I
(2) If a− b ∈ I then −(b− a) ∈ I since I is a subring.
(3) We have a− b ∈ I and b− c ∈ I. Thus a− c = (a− b) + (b− c) ∈ I since I is

closed under addition.
�

Here’s another that we have seen before:

Theorem 6.8. Let I ⊂ R be an ideal. If a ≡ b mod I and c ≡ dmodI then
(1) a+ c ≡ b+ d mod I
(2) ac ≡ bd mod I

Proof. We have a− b, c− d ∈ I.
20 An elegant (if perhaps complicated) way to express I is as the kernel of the composition of homo-

morphisms

Z[x]
ϕ−→ Z

ψ−→ Z2

Here ϕ is the evaluation map p(x) 7→ p(0). Thus maps p(x) to its constant term. The map Z→ Z2 sends
n 7→ [n]2. Thus ker(ψ ◦ϕ) is the set of polynomials with even constant term. We saw this on Exam 1. It is
a good idea to get comfortable with compositions, kernels and images.
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(1) (a+ c) − (b+ d) = (a− b) + (c− d) ∈ I
(2) ac− bd = ac− bc+ bc− bd = (a− b)c+ b(c− d). (a− b)c and b(c− d) are both

in I (absorption), thus their sum is in I.
�

If I is an ideal in R and a ∈ R then congruence class of a modulo I is the set of all elements
of R that are congruent to a modulo I. We compute it in the fashion we have before:

{b ∈ R : b ≡ a mod I} = {b ∈ R : b− a ∈ I} = {b ∈ R : b− a = i, i ∈ I}
= {b ∈ R : b = a+ i, i ∈ I}
= {a+ i : i ∈ I}

This time, we’ll denote the congruence class of a modulo I by the symbol a+ I rather
than [a]. This change of notation is justified by the fact that a+ I = {a+ i : i ∈ I}.21 a+ I
is called a coset of I in R.

Theorem 6.9. Let I be an ideal in R and let a, c ∈ R. Then a ≡ c mod I if and only if
a+ I = c+ I.

Proof. Let x ∈ a+ I. Then x = a+ i for some i ∈ I. We have a− c = i ′ for i ∈ I. Thus
x = (c+ i ′) + i = c+ (i ′ + i) ∈ c+ I. A similar argument shows c+ I ⊂ a+ I

Assume a+ I = c+ I. Then a ∈ a+ I = c+ I. Thus a = c+ i, so a− c = i ∈ I. Thus
a ≡ c mod I. �

Another proof we’ve seen before:

Corollary 6.10. Let I ⊂ R be an ideal. Then two cosets of I are either disjoint or equal.

Let’s consider I = (3). The cosets of I are the congruence classes modulo 3. Thus
0+ I, 1+ I, 2+ I. So the set Z/I of cosets is the set Z3.

Consider again I ⊂ Z[x] the ideal of all polynomials with even constant term. It is
straightforward that Z[x]/I consists of two distinct cosets: for f(x) ∈ Z[x] we have f(x)
has constant term either even or odd. If even then f(x) ∈ I and if odd then f(x) ∈ 1+ I.

Consider T = {f : R → R}. Let I = {f ∈ T : f(2) = 0}. Then f− g ∈ I if and only if
f(2) − g(2) = 0. Consider the constant function h(x) ≡ r ∈ R. h(x) is in its unique coset.

Let’s relate ideals and homomorphisms. Here are two lemmas we’ve seen before for
subrings.

Lemma 6.11. Let f : R→ S be a homomorphism. Let T ⊂ S be an ideal. Then f−1(T) is an ideal
in R.

Proof. We have from previous results that f−1(T) is a subring. We just have to show that
absorption property.

Let x ∈ R and a ∈ f−1(T). We want to show xa ∈ f−1(T). To check this, apply f. We
have f(xa) = f(x)f(a) ∈ f−1(T) since f(a) ∈ T and T is an ideal. Thus xa ∈ f−1(T).
Similarly, ax ∈ f−1(T). Thus f−1(T) is an ideal. �

Lemma 6.12. Let f : R → S be a surjective homomorphism. Let I ⊂ R be an ideal. Then f(I) is
an ideal in S.

21Notice that a+ I is just a formal notation. It does not indicate any real ‘addition’. We haven’t defined
the sum of an element a ∈ R and an ideal I ⊂ R.
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Proof. We’ve seen that f(I) = im(f) = {f(a)a ∈ R} is a subring. We now show absorption.
Let x ∈ S and y ∈ f(I). Since f is surjective, there are a ∈ R and b ∈ Iwith f(a) = x, f(b) =
y. Thus xy = f(a)f(b) = f(ab). b ∈ I thus ab ∈ I. Therefore xy = f(ab) ∈ f(I). �

Remark 6.13. You should understand precisely why/when surjectivity is needed for Lemma 6.12!

Remark 6.14. Compare and contrast these results to what we know about subrings!

Quotient Rings and Homomorphisms

We proceed as we’ve done before, and show that the congruence classes modulo an
ideal form a ring.

Let I be an ideal in a ring R. The elements of R/I are the cosets of I, i.e. a + I :=
{a+ i : i ∈ I}. We’ll show that R/I forms a ring by defining a multiplication and addition
operation on the cosets themselves. To do this we use arithmetic mod I.

Theorem 6.15. Let I ⊂ R be an ideal. If a+ I = b+ I and c+ I = d+ I in R/I, then

(a+ c) + I = (b+ d) + I and ac+ I = bd+ I

Proof. Straightforward from what we’ve done before. �

We define addition and multiplication as we’ve done before on congruence classes.

(a+ I) + (c+ I) = (a+ c) + I

and

(a+ I)(c+ I) = ac+ I

Here ‘+ ′ is being used for three different meanings. First, as the formal symbol denoted
a+ I. Second, as an operation of elements of Rwith a+c. Third, as an addition operation
on cosets, that is, the operation being defined.

Here’s an example. Let F be a field, p(x) ∈ F[x] and I = (p(x)). The cosets of I are the
congruence classes modulo p(x). Therefore F[x]/I is the ring F(x)/(p(x)).

Theorem 6.16. Let I ⊂ R be an ideal. Then

(1) R/I is a ring (with addition, multiplication as defined previously)
(2) If R is commutative then R/I is commutative
(3) If R has an identity, then so does R/I

Proof. (1) We’ll leave this for an exericse.
(2) If R is commutative then (a+ I)(c+ I) = ac+ I = ca+ I = (c+ I)(a+ I)
(3) What is the identity in R/I? (How about 1R + I?)

�

The ring R/I is called the quotient ring of R by I. One way to think about R/I is that you
are setting the elements in I to zero, i.e. you are collapsing the ideal I to zero. This is
what it means to work ‘mod I’.
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6.1. Homomorphisms. Quotient rings are the generalization of congruence class arith-
metic in Z and F[x]. We dabbled a bit with the relationship between homomorphisms
and quotients before, but in this section we will formalize this.

Recall that definition of kernel of a ring homomorphism f : R→ S

ker f := {r ∈ R : f(r) = 0S}

An equivalent way to express the kernel is as the fiber over 0S, i.e. ker f = f−1(0S).

Figure 1. This is a good image to have in mind for how kernels and images work.

Consider the homomorphism f : Z → Z6 defined by f(r) = [r]6. An easy computation
gets the kernel

ker f = {r ∈ Z : f(r) = [0]} = {r ∈ Z : [r] = [0]} = {r ∈ Z : r ≡ 0 mod 6} = {6k : k ∈ Z} = (6)

Consider the evaluation homomorphism ϕ : R[x] → R sending p(x) 7→ p(0), i.e. the
constant term. The kernel consists of all polynomials with constant term 0. All such
polynomials are divisible by x, thus kerϕ = (x).

Theorem 6.17. Let f : R→ S be a homomorphism of rings. Then ker f is an ideal in R.

Proof. We’ve seen before that the kernel is a subring. Now we must show the absorption
property. Let r ∈ R and a ∈ ker f. Then

f(ra) = f(r)f(a) = 0S = f(a)f(r) = f(ar)

Thus ra,ar ∈ ker f.
�

Remark 6.18. We’ve thus shown a relationship between kernels and ideals. In particular, any
kernel is an ideal. Moreover, we will see that an ideal I is the kernel of the epimorphism R→ R/I
given by r 7→ r+ I.

Recall the following theorem, which we have seen before.

Theorem 6.19. Let f : R→ S be a homomorphism of rings. Then ker f = {0R} if and only if f is
injective.

Proof. See Page 156 in BH. Or earlier in these notes. �

The following theorem is of fundamental importance to understanding the relationship
between kernels and quotient rings. We’ve studied the rings R and and quotient ring R/I.
For instance Z and Z2. One can consider these as two separate rings. However it is much
more important to understand that these are related by a particular homomorphism,
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n 7→ [n]2. This homomorphism captures the structure of how these two rings are related.
In particular it shows how Z2 can be ‘obtained’ from Z.

Theorem 6.20 (Natural Homomorphism). Let I be an ideal in R. The map π : R→ R/I given
by π(r) = r+ I is a surjective homomorphism with kernel I

Proof. The map π is surjective since a coset r+ I is in the image of π(r). The definition of
addition and multiplication in R/I shows that π is a homomorphism

π(r+ s) = (r+ s) + I = (r+ I) + (s+ I) = π(r) + π(s)

and
π(rs) = rs+ I = (r+ I)(s+ I) = π(r)π(s)

π(r) = r+ I = I if and only if r ∈ I. Thus ker f = I. �

Remark 6.21. The notation π is conventional notation for a quotient map such as this. The map
π is called the natural homomorphism.

The homomorphism π : R → R/I is a special case of a more general situation; the
situation of a surjective homomorphism f : R→ S. In this case S is called the homomorphic
image of R, since im(f) = f(R) = S. If f is an isomorphism, we know that R and S have the
same structure. In particular, if f is an isomorphism, it is injective, and thus ker f = {0R}.
If f is not an isomorphism, properties in one ring may not hold in the other. Even if f is
not an isomorphism, we the properties of S and fact that f is a homomorphism give us
information about R. BH provides a nice visual analogy:

[Think of a sculpture/shape R in R3.] If f : R→ S is an isomorphism then S is an
exact, three dimensional replica of R. If f is only a surjective homomorphism, then
S is a two-dimensional photographic image of R, in which some features of R are
accurately reflected but others are distorted or missing.

Let’s do some visual examples. The first is Figure 2, which describes a relationship
between the ring R and the ring R/I where I = (2π). R/(2π) is often thought of as the
circle.22

To quote again from BH, because this is a very nice description:
The following theorem states that every homomorphic image of a ring R is iso-
morphic to a quotient ring R/K for some ideal K. Thus, if you know all of the
quotient rings of R, then you know all the possible homomorphic images of R. The
ideal K = ker f measures how much information is lost in passing from the ring
R to the homomorphic image R/K. When ker f = (0R) then f is an isomorphism.

This is an extremely important structure theorem.

Theorem 6.22 (First Isomorphism Theorem). Let f : R → S be a surjective homomorphism.
Let K = ker f. Then the quotient ring R/K is isomorphic to S.

Proof. We define a function from ϕ : R/K → S and show its an isomorphism. Define
ϕ(a+K) = f(a). First of all we must show this is well defined, i.e. for a+K = b+K we
have ϕ(a+K) = ϕ(b+K). If a+K = b+K then a− b ∈ K, thus a− b ∈ ker f. Therefore

22This construction is natural in topology. In topology it is called a covering of the circle. See https:
//en.wikipedia.org/wiki/Covering space for more.

https://en.wikipedia.org/wiki/Covering_space
https://en.wikipedia.org/wiki/Covering_space
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Figure 2. Let’s consider the epimorphism p : R→ R/(2π)† given by

R 3 x 7→ [x]2π

We think of R as the real axis. We can think of R/(2π) as the circle (Why?).
We can visualize the structure as R wrapping around a ‘cylinder’ along the
z-axis, then the map p is a projection down onto the plane. What is kerp?
What is the fiber of p above [π]?

† Unfortunately in the figure the projection is drawn as π : R→ R/(2π). In the text we use p vs.
π for the natural homomorphism as we want to discuss π ∈ R in this example.

0 = f(a− b) = f(a) − f(b) = ϕ(a+ K) −ϕ(b+ K). If s ∈ S then there exists some a ∈ R
with f(a) = s. Thus ϕ(a+ K) = f(a) = s. So ϕ is surjective. To see that ϕ is injective,
notice that ϕ(a+ K) = f(a) = 0S implies that a ∈ ker f. Thus a ∈ K. Finally we show
that ϕ is a homomorphism. We compute

ϕ[(a+K) + (b+K)] = ϕ[(a+ b) +K] = f(a+ b) = f(a) + f(b) = ϕ(a+K) +ϕ(b+K)

and
ϕ[(a+K)(b+K)] = ϕ[ab+K] = f(ab) = f(a)f(b) = ϕ(a+K)ϕ(b+K)

Thus ϕ is an isomorphism.
�

Remark 6.23. A slightly more general way to state this theorem is that R/ ker f ∼= Im(f) for a
ring homomorphism f : R→ S.

Remark 6.24. This result is sometimes known as ‘Noether’s Isomorphism Theorem’ and is gen-
erally credited to Emmy Noether.

Look to Figure 3 for a picture of the theorem.

Let’s do some examples. In the ring Z[x] the principal ideal (x) = {k(x)x : k(x) ∈ Z[x]},
all polynomials with constant term 0. A natural question: what does the quotient ring
Z[x]/(x) look like? We can answer this question but using the evaluation homomor-
phism. Consider the map ϕ : Z[x] → Z given by p(x) 7→ p(0), i.e. map the polynomial
to its constant term. What is kerϕ? It is precisely the set of polynomials with constant
term 0, which is (x). Since ϕ is surjective (as we’ve discussed before) and kerϕ = (x) we
have Z[x]/(x) = Z[x]/ kerϕ ∼= Z.

Consider T = {f : R → R} and I = {f ∈ T : f(2) = 0}. What is T/I? If we can cook
up an appropriate homomorphism, then we can use the First Isomorphism Theorem.
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Figure 3. Visual Interpretation of the First Isomorphism Theorem. The
‘�’ is notation for a surjective homomorphism (epimorphism). Can you
see why this image is a (albeit crude) depiction the fact R/ ker f ∼= S? Notice
here that we are collapsing ker f to zero.

Let’s define ϕ : T → R by ϕ(f) = f(2).23 Then ϕ is surjective and a homomorphism
as ϕ(f+ g) = (f+ g)(2) = f(2) + g(2) = ϕ(f) +ϕ(g) and ϕ(fg) = (fg)(2) = f(2)g(2) =
ϕ(f)ϕ(g). Then kerϕ = {g ∈ T : g(2) = 0} = I. Thus T/I = T/ kerϕ ∼= R.

Finally, what do homomorphic images of Z look like? Suppose f : Z → S is a homo-
morphism. If f is an isomorphism then S is an ‘isomorphic copy’ of Z. If f is surjective,
then Z/ ker f ∼= S. Since ker f is an ideal in Z, it is principal (this is a fairly straightfor-
ward argument24), so ker f = (n) for some n 6= 0. Thus S ∼= Z/ ker f = Z/(n) = Zn.
Thus every homomorphic image of Z is either isomorphic to Z or Zn for some n.

The Structure of R/I when I is Prime or Maximal

Primes in Z and irreducibles in F[x] play the same role in the structure of the respective
quotient rings. We now want to abstract this concept to general commutative rings.

Recall that in Z we have that p is prime if and only if p ∈ Z such that if p|bc then p|b
or p|c. To say p|b means that b is a multiple of p. In terms of ideals this means that
b ∈ (p).

Thus we can say that p is prime if and only if whenever bc ∈ (p) then b ∈ (p) or
c ∈ (p). This motivates our following, abstract definition.

Definition 6.25. An ideal P in a commutative ring R is said to be prime if P 6= R and if
bc ∈ P then b ∈ P or c ∈ P.

Let’s go back to Z for an example. The principal ideal (p) is prime in Z whenever p is
prime. On the other hand (6) (the ideal) is not prime, since 2 · 3 = (6) but 2, 3 6∈ (6).

Here’s a subtle difference between prime integers and prime ideals: (0) in Z is prime
since ab = 0 implies a = 0 or b = 0.

Let’s do examples in Z[x]:
Let I = {anx

n + . . .+ a1x+ 2a0 : ai ∈ Z} ⊆ Z[x]. Then I 6= Z[x]. Let f(x) = anxn + . . .+
a0 and g(x) = bmxm+ . . . b0 such that f(x)g(x) ∈ I. The constant term of f(x)g(x) is a0b0
and is even. Thus a0 or b0 must be even since the product of two odd integers is odd.
This implies f(x) or g(x) is in I. Thus I is prime.

23That is f 7→ f(2). This is an evaluation homomorphism for general functions instead of just
polynomials

24Can you show this? Use the Well Ordering Principle and Bezout’s Theorem
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Recall that (x) ⊆ Z[x] is the principal ideal generated by x, i.e. the polynomials with
zero constant term. Is (x) prime? If f(x) = anxn + . . . a0 and g(x) = bmxm + . . .+ b0 and
f(x)g(x) ∈ (x) then a0b0 = 0. In this case a0 = 0 or b0 = 0, thus f(x) ∈ (x) or g(x) ∈ (x).

We’ve computed Z[x]/(x) ∼= Z. This shows that R/P is not necessarily a field if P is
prime (this contrasts Z/(p) = Zp being a field when p is prime). The best we can get
with prime ideals is that R/P is an integral domain, as the next result shows.

Remark 6.26. We’ll do this proof a bit differently than done in BH. We want to stress the
importance of the natural homomorphism π : R → R/P. See Theorem 6.14 in BH for alternate
proof.

Theorem 6.27. Let P be an ideal in a commutative ring R with identity. Then P is a prime ideal
if and only if the quotient ring R/P is an integral domain.

Proof. Let π : R→ R/P be the natural morphism, i.e. a 7→ a+ P. Note that kerπ = P.
Let P be prime. Any a+ P in R/P can be written as π(a). Let π(a)π(b) = 0. We show
π(a) = 0 or π(b) = 0. We have 0 = π(a)π(b) = π(ab). Thus ab ∈ kerπ = P. Since P is
prime a ∈ P or b ∈ P. Since P = kerπ this implies either π(a) = 0 or π(b) = 0. It remains
to show 1R + P 6= 0R + p. Since P is prime P 6= R, thus 1R /∈ P so 1R + P 6= P.

Now let R/P be an integral domain. Assume ab ∈ P. We show a ∈ P or b ∈ P. We
have 0 = π(ab) = π(a)π(b). Thus π(a) = 0 or π(b) = 0. This implies a ∈ P or b ∈ P.
It remains to show P 6= R. Since R/P is an integral domain 1R + P 6= P thus 1R 6∈ P. So
P 6= R.

�

Since a R/P for P prime is not necessarily a field, it is natural to ask what condition on
P guarantees that R/P is a field. We now answer that question.

Definition 6.28. An ideal M is maximal if M 6= R and whenever J is an ideal such that
M ⊂ J ⊂ R then M = J or J = R.

Let’s consider some examples. Is (3) ⊂ Z maximal? Notice that Z/(3) ∼= Z3 is a field.
Is (x) ⊂ Z[x] maximal? We saw that Z[x]/(x) is not a field.
Here are some nice relationships between fields and ideals.

Lemma 6.29. Let F be a commutative ring with identity. Then F is a field if and only if the only
ideals of F are 0 or F.

Proof. Let F be a field. Let I ⊂ F be an ideal. Then 1F ∈ I or 1F 6∈ I. If 1F ∈ I then I = F
(Why? for any a ∈ F we have a = a1F ∈ I). Suppose 1F 6∈ I. Let a ∈ I. If a 6= 0 then by
absorption for a−1 ∈ F we have a−1a = 1F ∈ I. This is a contradiction.

Now assume the only ideals of F are 0 or F. We show F is a field. Let a ∈ F with a 6= 0.
Consider (a) = {xa : x ∈ F}. (a) 6= 0 (why?) thus (a) = F. Thus there is x such that
xa = 1F. So F is a field. �

Theorem 6.30. Let M be an ideal in a commutative ring R with identity. Then M is maximal if
and only if the quotient ring R/M is a field.

Proof. Consider the natural homomorphism π : R→ R/M given by a 7→ a+M. We know
by Theorem 6.20 that π is a surjective homomorphism with kerπ =M.
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Assume thatM is maximal. We want to show that R/M is a field. We’ll use Lemma 6.29.
Suppose J ⊂ R/M is an ideal. Then π−1(J) is an ideal by Lemma 6.11 and

M ⊆ π−1(J) ⊆ R
Thus π−1(J) = M or π−1(J) = R by maximality of M. If π−1(J) = M then J = 0. If
π−1(J) = R then J = R/M. Thus R/M is a field by Lemma 6.29.

Now assume that R/M is a field. We want to show that M is maximal. Let M ⊆ J ⊆ R.
Then 0 = π(M) ⊆ π(J) = π(R) = R/M (Why?). π(J) is an ideal of p(R) = R/M by
Lemma 6.12).25 By Lemma 6.29 we have that π(J) = 0 or π(J) = R. If π(J) = 0 then
J =M. If π(J) = R/M then J = R. Thus M is maximal.

�

Remark 6.31. See the proof in BH, Theorem 6.15 (pg 165) for a much more hands on approach!
The approach presented here is (perhaps) more elegant. It illustrates the power of carrying around
the natural homomorphism π : R → R/M instead of thinking of R and R/M as completely
distinct objects. This proof hints at the depth of insight that can be gained by understanding the
morphisms between two structures.

Corollary 6.32. In a commutative ring R with identity, every maximal ideal is prime.

Proof. If M is a maximal ideal then R/M is a field. Thus R/M is an integral domain.
Thus M is prime. �

The ideal I of polynomials with even constant terms in Z[x] is maximal since Z[x]/I is
a field - it is isomorphic to Z2 as we have seen before.

Another example, let T = {f : R → R} and I = {f ∈ T : f(2) = 0}. We’ve seen that
T/I ∼= R. Thus I is maximal.

We say in the proof of Theorem 6.30 that ideals in R/M and R are related. We now
formalize this idea.

Proposition 6.33 (Correspondence Theorem). Let I ⊂ R be an ideal. Consider the natural
homomorphism π : R→ R/I. Set R̄ = R/I.

(1) There is a bijective correspondence between the set of ideals of R which contain I and the
set of all ideals of R/I. This correspondence is given by

J 7→ π(J) π−1(J̄) 7→ J

(2) If J ⊂ R corresponds to J̄ ⊂ R̄ then R/J and R̄/J̄ are isomorphic rings.

Proof. For ideal J̄ ⊂ R̄ have by Lemma 6.11 that π−1(J̄) is an ideal. Since π is surjective, for
ideal J we have π(J) is an ideal of R̄ by Lemma 6.12. This shows that the correspondence
does send ideals to ideals. We must show that it is bijective. It suffices to show that
π(π−1(J̄)) = J̄ and π−1(π(J)) = J (Why?). The equality π(π−1(J̄)) = J̄ holds since π is
surjective. Furthermore I ⊂ π−1(π(J)) holds for any map of sets. Let x ∈ π−1(π(J)). We
show x ∈ J. We have π(x) ∈ π(J). Thus there exists y ∈ J such that π(y) = π(x). Now we
have 0 = π(x) − π(y) = π(x− y). Thus x− y ∈ kerπ = I. Since I ⊂ J and y ∈ J we have
x = (x− y) + y ∈ J.

25Be careful here. Note that homomorphic images of ideals are not necessarily ideals of the codomain.
For ideal I ⊂ R and homomorphism f : R→ S the homomorphic image f(I) is an ideal of the subring f(R),
not necessarily S.
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Now let I ⊂ J. Denote J̄ = π(J). Consider the composition

R
π−→ R̄

ϕ−→ R̄/J̄

Here π is the natural homomorphism R → R/I and ϕ is the natural homomorphism
R̄ → R̄/J̄. Note that kerϕ = J̄. Let φ := φ ◦ π. Then φ : R → R̄/J̄. Since ϕ and
π are surjective so is φ. Therefore by the First Isomorphism theorem we have that
R/ ker(φ) ∼= R̄/J̄. Let’s compute ker(φ).

ker(φ) = {a ∈ R : φ(a) = 0} = {a ∈ R : π(a) ∈ kerϕ} = {a ∈ R : π(a) ∈ J̄} = π−1(J̄)
Thus R/π−1(J̄) ∼= R̄/J̄. From above we have π−1(J̄) = π−1(π(J)) = J. Thus

R/J ∼= R̄J̄

�

Remark 6.34. Number (2) here is sometimes called the ‘Third Isomorphism Theorem’.
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The introduction of the cipher 0 or the group concept was general nonsense too,
and mathematics was more or less stagnating for thousands of years because no-
body was around to take such childish steps.

– Alexander Grothendieck26

7. Group Theory

We’ve studied the rings Z, Zn, R, F[x], etc. These have been sets equipped with two
operations. Groups will be sets with only one operation. Some groups arise from rings
by ignoring one of the operations. Many of the ideas, such as homomorphisms, kernels,
images, cosets, will also be found here in group theory.

We’ll take a similar path through group theory as we did through ring theory. The
following is our rough road map for group theory:

(1) Groups and their (basic) properties
(2) Subgroups
(3) Homomorphisms, Isomorphisms
(4) Congruence, Quotients, Homomorphisms (Here we’ll find normal subgroups vs

ideals, normal subgroups will arise as kernels)
(5) Isomorphism and Structure Theorems (Another First Isomorphism Theorem, some

structure results)
A prototypical example is the group of permutations. A permutation on a set T is just a

ordering of its elements. Let T = {1, 2, 3}. There are six possible permutations of T :

123 132 213 231 312 321

Each ordering determines a bijective function from T to T : map 1 to the first element
of the ordering, 2 to the second, and 3 to the third, i.e. for the ordering 231 there is a
bijection f : T → T given by

f(1) = 2 f(2) = 3 f(3) = 1

Conversely, every bijective function from T to T defines an ordering of elements, namely
f(1)f(2)f(3).

A permutation of a set T is a bijective function from T to T . Let’s go back to our example.
Let T = {1, 2, 3}. It is conventional to represent the permutation f : T → T whose rule is
given by f(1) = 2, f(2) = 3, f(3) = 1 as the array(

1 2 3
2 3 1

)
We think of the first row as the domain and the second row as the range, i.e. 1 ∈ T gets
mapped to f(1) = 2.

The composition of two bijective functions is bijective, thus the composition of any two
permutations is also a permutation. For instance, take

f =

(
1 2 3
3 2 1

)
and g =

(
1 2 3
2 1 3

)
26Correspondence to Ronald Brown.
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Then f ◦ g is the function given by

f ◦ g =

(
1 2 3
3 2 1

)
◦
(
1 2 3
2 1 3

)
=

(
1 2 3
2 3 1

)
The conventional notation for a permutation let’s us easily compute what a composition

is by tracking the element through both bijections.
Denote the set of permutations of T = {1, 2, 3} by S3. The composition of functions is

an operation on S3, i.e. f,g ∈ S3 then f ◦ g ∈ S3. Composition of functions is associative,
thus

(f ◦ g) ◦ h = f ◦ (g ◦ h)
There is an identity permutation, which is the identity function, denoted

I =

(
1 2 3
1 2 3

)
Then I ◦ f = f and f ◦ I = I for each f ∈ S3. Furthermore every bijection has an inverse
function (which is also a bijection), for instance

f =

(
1 2 3
2 3 1

)
f−1 =

(
1 2 3
3 1 2

)
Thus for f ∈ S3 then there exists g ∈ S3 such that f ◦ g = I and g ◦ f = I.
Is f ◦ g = g ◦ f? (

1 2 3
3 2 1

)
◦
(
1 2 3
2 1 3

)
=

(
1 2 3
2 3 1

)
but (

1 2 3
2 1 3

)
◦
(
1 2 3
3 2 1

)
=

(
1 2 3
3 1 2

)
Definition 7.1. A group is a nonempty set G equipped with a binary operation · that
satisfies

(1) Closed. If a,b ∈ G then a · b ∈ G
(2) Associative. a · (b · c) = (a · b) · c
(3) Identity. There exists e ∈ G such that a · e = a = e · a
(4) Inverse. For each a ∈ G there exists b ∈ G such that a · b = e = b · a

A group is called abelian27 if it is commutative, i.e. a · b = b · a for all a,b ∈ G. We
will often abbreviate a · b by ab (suppressing the · notation). If G is not abelian it is
called nonabelian. For abelian groups we will often denote the group operation by +,
i.e. a · b we’ll denote a+ b (this is conventional, as we have all seen that addition as we
understand it is commutative).

A group G is said to be finite or of finite order if |G| < ∞ (i.e. finite cardinality). In this
case |G| is called the order of G. Groups with infinitely many elements are said to have
infinite order.

We’ve seen that S3 is a nonabelian group of order 6 with the operation · is ◦, i.e. being
composition.

The permutation group S3 is a special case of a general symmetric group. Let n be a
positive integer. Let T = {1, 2, 3, . . . ,n}. Let Sn be the set of all permutations of T (all

27In honor of N. Abel https://en.wikipedia.org/wiki/Niels Henrik Abel

https://en.wikipedia.org/wiki/Niels_Henrik_Abel
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bijections T → T ). This is called the symmetric group on n symbols. What is the order of
Sn? |Sn| = n! = n(n− 1)(n− 2) · · · (2)(1).

7.1. Symmetries of the Square.
Il est peu de notions en mathématiques qui soient plus primitives que celle de loi
de composition.

– Nicolas Bourbaki28

Let’s work an example on the symmetries of the square. This group is denoted D4 and
called the dihedral group of degree 4 or the group of symmetries of the square. This is
Example 5 on Page 173 in BH. We can consider a ‘Platonic’ square S which resides in
the plane, whose vertices we identify with the numbers 1− 4.

A symmetry of the square is a rigid motion of the square in the plane, i.e. rotating
it, flipping it, etc29. Mathematically, it is a symmetry is distance-preserving map m :
S → S. Thus S 7→ m(S). These symmetries will become the elements of our group of
symmetries. Let’s write down a few of them:

Figure 4. Here’s a 90◦ rotation counterclockwise. S gets mapped to itself,
and the image is rotated. Denote this by r

28Roughly: ‘There are few notions in mathematics that are more primitives than that of law of composition.’
More info on Nicolas Bourbaki: https://en.wikipedia.org/wiki/Nicolas Bourbaki

29The symmetry group of a mattress (or rectangle) is a subgroup of the symmetries of a square! See S.
Strogatz’s NYT article [6]

https://en.wikipedia.org/wiki/Nicolas_Bourbaki
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Figure 5. All counterclockwise rotations.

Figure 6. This is a reflection of S over the x axis. Denote this by s

How many symmetries of the square are there? Any rotation can be written as rn, i.e.
as the n-fold composition r ◦ r · · · ◦ r for n = 0, 1, 2, 3. How many reflections are there?
There are four lines to reflect over, x-axis, y-axis, x = y and x = −y. I claim that any of
these reflections can be obtained by a composition of s and some rotation. For instance,
how to get the reflection over x = y?

Figure 7. This is a reflection of S over x = y.

There are two other rotations, that may be obtained from r and s as follows:

This means that D4 is generated by r and s, since any element of D4 can be written as a
product of these two elements. The composition operation table is given in BH on page



MATH 351: INTRODUCTION TO ABSTRACT ALGEBRA SUMMER 2017, RUTGERS UNIVERSITY 59

Figure 8. First rotate using r3 = r ◦ r ◦ r. This is a rotation of 270◦. Now
reflect using s over x-axis.

Figure 9. Reflections over y = −x and y axes

190. D4 is not abelian. Why? Consider s ◦ r and r ◦ s? D4 is a subgroup of S4, the set of
permutations on 4 letters. Why?

R. Penrose has an excellent formalization of these symmetries in his wonderful book [5,
Chapter 13.1]. We will follow his exposition. Let’s think about the Platonic square S as
residing in the complex plane C. We may represent the vertices of the square as the
points 1, i,−1,−i as in Figure 10.

In Figure 10 we see the (subgroup of) rotations can be represented by multiplication by
1 = i0, i,−1 = i2,−i = i3. Our reflection s above corresponds to the function C : C→ C,

complex conjugation z
C−→ z̄, i.e. reflection over the x-axis. Thus the reflections are

C, iC, i2C, i3C.

7.2. Groups and Rings. We know a ring R has two associative operations. When is R is
a group under one?

Proposition 7.2. Let R be a ring. Then (R,+) is an abelian group.
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Figure 10. The square embedded in C with its reflections and rotations.

Proof. (1) Closed (?) Yes.
(2) Associative (?) Yes.
(3) Identity (?) Yes.
(4) Inverses (?) Yes.

�

Thus the following familiar rings are abelian groups under addition

Z, Zn, Q, R, C,M2(R),R[x]

Conjecture 7.3. Let R be a nonzero ring. Is (R, ·) a group?

Proof. (1) Closed (?) Yes.
(2) Associative (?) Yes.
(3) Identity ? Not necessarily.
(4) Inverse: 0R has no inverse. Axiom 4 always fails.

�

Thus for a nonzero ring R, (R, ·) is never a group under multiplication. If R does not
have identity it fails the identity axiom. Even if does have identity, then 0R has no inverse
and the inverse axiom fails. How can we fix this?

Proposition 7.4. Let F be a field. Let F∗ be the nonzero elements of F. Then F∗ is an abelian
group under multiplication.

Proof. From the ring axioms we have 1− 4. From commutativity we have 5.
(1) Closed.
(2) Associative.
(3) Identity.
(4) Inverse.
(5) Abelian.

�
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The notation F∗ is conventional the ∗ refers to multiplication. Sometimes you’ll see this
as F×. For instance, Q∗, R∗, C∗ are all abelian groups under multiplication.

Non-example. Is Z\{0} a group under multiplication? (Inverses?) What about Z10\{0}
with multiplication? (Again inverses?) How about Zn for n composite?

Theorem 7.5. Let R be a ring with identity. The set U of all units in R is a group under
multiplication.

Proof. (1) U is closed as we’ve seen the product of two units is a unit. Let a,b ∈ U.
Then (ab)(b−1a−1) = 1 = (b−1a−1)ab.

(2) Associative follows from ring axiom.
(3) 1R is a unit, thus 1R ∈ U
(4) U has inverses by definition of unit.

�

Example. Denote the group of units in Zn by Un. Then this is a group. What is Un?
(Think about coprime).

Example. Consider

GL2(R) =
{(a b

c d

)
: a,b, c,d ∈ R ad− bc 6= 0

}
GL2(R) is called the general linear group (the set of invertible matrices). It is an infinite

order nonabelian group.
Just as with rings, we can consider a product group.

Theorem 7.6. Let G and H be groups. Define G×H by

(g,h)(g ′,h ′) = (gg ′,hh ′)

Then G×H is a group. If G and H are abelian then so is G×H. If G and H are finite, so is
G×H and |G×H| = |G||H|.

For instance, consider (Z,+) and (Z6,+) with addition. We can make a product group
Z×Z6. What is the identity - (0, 0). What is the inverse of (7, 4)? How about (−7, 2), we
have (7, 4) + (−7, 2) = (0, 0).

7.3. Basic Properties. In order to speak of the inverse element and the identity element
we must show these objects are unique.

Theorem 7.7. Let G be a group and let a,b, c ∈ G. Then
(1) G has a unique identity element
(2) Cancellation holds: If ab = ac then b = c and if ba = ca then b = c.
(3) Each element of G has a unique inverse.

Proof. (1) Suppose e, e ′ are identities. Then e = ee ′ = e ′.
(2) If ab = ac then a−1(ab) = a−1(ac) implying b = c.
(3) Let a ∈ G. Let b, c be inverses of a. Then ab = e = ac. By cancellation b = c.

�

Because the inverse is unique, we denote an inverse as a−1.

Corollary 7.8. Let G be a group. Let a,b ∈ G. Then
(1) (ab)−1 = b−1a−1
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(2) (a−1)−1 = a

Proof. We see that (ab)(b−1a−1) = 1 = (b−1a−1)(ab). We have aa−1 = e = a−1a. Thus a
is an inverse for a−1. By uniqueness (a−1)−1 = a. �

Let G be a group and a ∈ G. We define an = aaa · · ·a (n factors). We define a0 = e.
And a−n = a−1 · · ·a−1 (n factors).

An element a ∈ G is said to have finite order if ak = e for some k > 0. The order of a is
said to be the smallest positive integer n such that an = e. The order of a is denoted |a|.
An element has infinite order if ak 6= e for all k > 0.

Order of 8 in Z12? (See 8+ 8+ 8 = 24).

Theorem 7.9. Let G be a group and a ∈ G.
(1) If a has infinite order, then the ak are all distinct
(2) If ai = aj for i 6= j then a has finite order.

Proof. Notice that these statements are contrapositives. Thus it suffices to prove one of
them. Suppose ai = aj for i > j. Multiply both sides by a−j to get ai−j = aj−j = a0 = e.
Since i− j > 0 this implies a has finite order. �

Theorem 7.10. Let G be a group and a ∈ G with |a| = n. Then
(1) ak = e if and only if n|k
(2) ai = aj if and only if i ≡ j mod n
(3) If n = td with d > 1 then at has order d

Proof. (1) If n|k say k = nt. Then ak = ant = (an)t = et = e. Now suppose
ak = e. Use the division algorithm to write k = nq+ r with 0 6 r < n. Thus
e = ak = anq+r = anqar = (an)qar = eqar = ear = ar. By definition of order n is
smallest positive integer with an = e. Thus ar = e implies r = 0 and n|k.

(2) ai = aj if and only if ai−j = e. By (1) we have ai−j = e if and only if n|(i− j) thus
if and only if i ≡ j mod n.

(3) We have e = an = atd = (at)d. We must show d is smallest such integer. If
(at)k = e for some positive integer k then atk = e. Thus n|tk by (1) so tk = mn =
m(td). Thus k = md, so d 6 k.

�

8. Subgroups

Definition 8.1. Let G be a group. H ⊆ G is a subgroup if H is itself a group. This is
denoted H 6 G.

Every group G has two subgroups: G 6 G and {e} 6 G. {e} is called the trivial subgroup.
We’ve seen that R∗ - the nonzero real numbers is a group under multiplication. The

group R∗∗ of positive real numbers is a subgroup of R∗. Z ⊂ Q is a subgroup.
When checking that a subset is a subgroup, we only have to check two of the axioms:

Proposition 8.2. A nonempty subset H ⊂ G is a subgroup provided that
(1) If a,b ∈ H then ab ∈ H (closure)
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(2) If a ∈ H then a−1 ∈ H (inverses)

Proof. Associativity holds since H ⊆ G. By hypothesis we have inverses and closure. It
remains to show e ∈ H. H is nonempty so there is some a ∈ H. By (2) we have a−1 ∈ H.
Thus e = aa−1 ∈ H.

�

Consider

H :=
{(

1 x
0 1

)
: x ∈ R

}
We have 1 · 1− x · 0 = 1 so H is a nonempty subset of GL2(R). We have

(
1 x
0 1

)(
1 y
0 1

)
=(

1 x+ y
0 1

)
. The inverse of

(
1 x
0 1

)
is
(
1 −x
0 1

)
. Thus H is a subgroup by Proposition 8.2.

Proposition 8.3. Let H be a nonempty finite subset of a group G. If H is closed under the
operation in G, then H is a subgroup of G.

Proof. By Proposition 8.2 we need only verify that inverses are in H. If a ∈ H, by closure
ak ∈ H for every k > 1. H is finite, so aj = ai for some i 6= j. Thus |a| = n < ∞. Now
(an−1)a = an = e = an = a(an−1). So an−1 is the inverse of a and is in H.

�

Consider H = {σ ∈ S5 : σ(1) = 1}, i.e. all permutations on 5 letters that fix 1. If g,h ∈ H
then g(1) = 1 = h(1). So (g ◦ h)(1) = g(h(1)) = 1. Thus g ◦ h ∈ H and H 6 S5 by
Proposition 8.3.

Let G be a group. The center of G is the subset Z(G) defined as

Z(G) := {a ∈ G : ag = ga for all g ∈ G}
Thus Z(G) is the set of elements that commute with every element of G. Notice that

if G is abelian then Z(G) = G. When G is nonabelian then Z(G) 6= G. Z(G) is always
nonempty, as e ∈ Z(G).

Theorem 8.4. Let G be a group. Then Z(G) 6 G.

Proof. Z(G) is nonempty. By Theorem 8.2 we must show Z(G) is closed and has inverses.
Let a,b ∈ Z(G). Let g ∈ G. Then

(ab)g = a(bg) = a(gb) = (ag)b = (ga)b = g(ab)

We have ga−1 = (ag−1)−1 = (g−1a)−1 = a−1g.
�

An important type of subgroup is constructed from a single element. Let G be a group.
Let a ∈ G. Then

〈a〉 = {. . . ,a−3,a−2,a−1,a0,a1,a2,a3, . . .} = {an|a ∈ Z}

Proposition 8.5. Let G be a group. Let a ∈ G. Then 〈a〉 6 G.

Proof. a ∈ 〈a〉. aiaj = ai+j ∈ 〈a〉. The inverse of ak is a−k ∈ 〈a〉.
�

Theorem 8.6. Let G be a group. Let a ∈ G.
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(1) If a has infinite order, then 〈a〉 is an infinite subgroup consisting of the distinct elements
ak with k ∈ Z

(2) If |a| = n then |〈a〉| = n and 〈a〉 = {e,a1,a2, . . . an−1}.

Proof. (1) The follows directly from our previous lemma.
(2) Let ai ∈ 〈a〉. Then i ∼= k mod n for some k ∈ {0, 1, 2, . . . n− 1}. Thus ai = ak.

Furthermore all powers ak for k ∈ {0, 1, 2, . . . n− 1} are distinct.
�

Let G be a group. Let S ⊆ G be nonempty. Define 〈S〉 as the set of all possible products
of elements of S and their inverses.

Theorem 8.7. (1) 〈S〉 6 G and S ⊂ 〈S〉.
(2) If H 6 G and S ⊆ H then 〈S〉 ⊆ H.

Proof. (1) 〈S〉 is nonempty as S is nonempty. Let a,b ∈ 〈S〉. Then a = a1a2 · · ·ak
where ai ∈ S or a−1i ∈ S and b = b1b2 · · ·bm where bi ∈ S or b−1i ∈ S. Thus
ab = a1a2 · · ·akb1b2 · · ·bm consists of elements of S or their inverses. Hence
ab ∈ 〈S〉. The inverse of a = a1a2 · · ·ak ∈ S is a−11 a

−1
2 · · ·a

−1
k and a−1i is either an

element of S or inverse of element in S since ai is. Thus a−1 ∈ S. Thus 〈S〉 6 G.
(2) Any subgroup H with S ⊂ H must have all inverses of the elements of S. By clo-

sure it must also contain all possible products of elements of S and their inverses.
Thus 〈S〉 ⊆ H.

�

This theorem shows that 〈S〉 is the smallest subgroup of G that contains S (this is an
alternate definition). 〈S〉 is called the subgroup generated by S.

9. Homomorphisms and Isomorphisms

We’ve seen the idea of homomorphism and isomorphism before. In this Section we’ll
write down what the morphisms are in the category of groups.

Definition 9.1. Let G,H be groups. G is isomorphic to H if there is a function f : G→ H such
that

(1) f is injective
(2) f is surjective
(3) f(ab) = f(a)f(b) for all a,b ∈ G

If G and H are isomorphic we denote this by G ∼= H. The groups isomorphic to a given
group G form the isomorphism class of G and any two groups in that class are isomorphic.
Sometimes you hear about classifying groups and what is meant by this is describing the
isomorphism classes.

Consider the subset of GL2(R) given by

H :=
{(

1 x
0 1

)
: x ∈ R

}
Let A =

(
1 x
0 1

)
and B =

(
1 y
0 1

)
. Then AB =

(
1 x
0 1

)(
1 y
0 1

)
=

(
1 x+ y
0 1

)
The upper right entries add when matrices multiply in H. The rest of the entries

remain fixed. Thus when computing with such matrices we only need to keep track of
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the upper right entry. So what does H look like? It seems to look like R. How about the

map a 7→
(
1 a
0 1

)
. Exercise: show this is an isomorphism.

The additive group R is isomorphic to R∗∗ of positive real numbers. Let f : R → R∗∗

be given by a 7→ 10a.
(1) (Injective) If 10r = 10s then take log to get log 10r = log 10s implying r = s.
(2) (Surjective.) Let r ∈ R. Then a = log r. Then f(a) = 10a = 10log r = r.
(3) (Homomorphism.) Finally f(a+ b) = 10a+b = 10a10b = f(a)f(b)

Some remarks on isomorphisms.
(1) If G and H have different orders, then G and H are not isomorphic.
(2) If G is abelian and H is nonabelian then G and H are not isomorphic (compare

Z6 and S3).30

(3) It is straightforward that if f is an isomorphism then a and f(a) have the same
order. Let’s do an example. Are Z2 ×Z2 and Z4 isomorphic? These are both
abelian groups, with the same order. However, Z4 has elements of order 4, namely
1 and 3. Z2 ×Z2 only has elements of order 1 and 2.

If G is a group then an isomorphism G → G is called an automorphism of G. A simple
example of an automorphism is the identity map ι : G → G given by G 3 g 7→ g ∈ G.
It’s straightforward that this is indeed an automorphism. Here is an important example
of an automorphism. Let G be a group. Fix a ∈ G. Define f : G→ G by f(g) = a−1ga. f
is sometimes called conjugation by a31. Then

f(gh) = a−1gha = a−1g(aa−1)ha = (a−1ga)(a−1ha) = f(g)f(h)

Now we show that f is injective. ker f = {g ∈ G : a−1ga = eG} = {eG}. Let’s show
f surjective. Let g ∈ G. Consider h = aga−1. Then f(h) = a−1ha = a−1(aga−1a =
(a−1a)g(a−1a) = ege = g. Thus g 7→ a−1ga is an automorphism. This is sometimes
called the inner automorphism of G by a.

9.1. Homomorphisms.

Definition 9.2. Let G,H be groups. A function f : G→ H is a homomorphism if

f(ab) = f(a)f(b) for all a,b ∈ G

There are important subgroups associated to every homomorphism. These are the
kernel and image. The kernel of a group homomorphism f : G → H is defined as
ker f := f−1(eH) = {g ∈ G : f(g) = 0}.

Consider f : R∗ → R∗ given by f(x) = x2. This is a homomorphism as f(xy) = (xy)2 =
x2y2 = f(x)f(y). However, f is not injective as (−x)2 = f(−x) = f(x) = x2.

Theorem 9.3. Let G,H be groups. Denote the identities eG and eH. For a homomorphism
f : G→ H we have

(1) f(eG) = eH
30We’ll develop the notion of ker f in a bit. This will give us more algebraic machinery. In this case, we

can examine where ab− ba maps under f : G→ H. If G is abelian then f(ab− ba) = 0.
31Conjugation is an idea in math that arises often. See https://en.wikipedia.org/wiki/Matrix

similarity (do you see the similarity here? no pun intended) and https://en.wikipedia.org/wiki/
Conjugacy class

https://en.wikipedia.org/wiki/Matrix_similarity
https://en.wikipedia.org/wiki/Matrix_similarity
https://en.wikipedia.org/wiki/Conjugacy_class
https://en.wikipedia.org/wiki/Conjugacy_class
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(2) f(a−1) = f(a)−1 for all a ∈ G
(3) Im(f) 6 H.
(4) If f is injective then G ∼= Imf.

Proof. (1) We have f(eG) = f(eGeG) = f(eG)f(eG) Use cancellation, applying f(eG)−1,
to get eH = f(eG).

(2) f(a)f(a)−1 = eH = f(eG) = f(aa
−1) = f(a)f(a−1). By cancellation f(a−1) = f(a)−1.

(3) Let a,b ∈ Im(f). Then f(g) = a and f(h) = b for some g,h ∈ H. Thus ab =
f(g)f(h) = f(gh) ∈ Im(f). For inverses we have f(g−1) = f(g)−1 = a−1. Thus
a−1 ∈ Im(f).

(4) We can consider f : G → H as a surjective homomorphism f : G → Im(f) ⊆ H. If
f is injective, then f is an isomorphism by definition.

�

Lemma 9.4. Let f : G→ H be a homomorphism. Then ker f = {e} if and only if f is injective.

Proof. If f is injective and g ∈ ker f then f(g) = f(eG). Thus g = eG by injectivity.
If ker f = {e} observe that f(a) = f(b) if and only if f(a)f(b)−1 = eH if and only if
f(a)f(b−1) = e if and only if f(ab−1) = e. Thus ab−1 = e, so a = b. �

Here are some examples of homomorphisms:

(1) the determinant function, det : GL2(R)→ R given by
(
a b
c d

)
7→ ad− bc

(2) Let G be a group. Let a ∈ G. The map ϕ : Z→ G given n 7→ an

(3) Let H 6 G. The inclusion map i : H→ G given by i(a) = a.
(4) Consider C∗ and R∗. Let ϕ : C∗ → R∗ given by ϕ(a) = |a|. The fibers of this map

are concentric circles about 0 in C, visualized as follows:

(5) f : Z→ Z5 given by f(a) = [a]5. ker f = 5Z.
(6) Let G,G ′ be groups. The product group G×G ′ is related to the factors G and G ′

by homomorphisms:

G
i
&&

G

G×G ′
p

88

p ′ &&
G ′

i ′

88

G ′

here i(x) = (x, eG ′), i ′(x) = (eG, x), p(x, x ′) = x p ′(x, x ′) = x ′

It is straightforward i, i ′,p,p ′ are homomorphisms. The maps i, i ′ are injective
and p,p ′ are surjective. Im(i) = G× eG ′ and kerp = eG ×G ′. Similar for i ′,p ′.
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9.2. Cayley’s Theorem. The next theorem relates arbitrary groups with groups of per-
mutations. It says that the study of group theory can be reduced to the study of permu-
tation groups.

Theorem 9.5 (Cayley’s Theorem). Every group G is isomorphic to a group of permutations.

Proof. Consider the group A(G) of all permutations on the set G (that is, forget the group
structure). A(G) consists of all bijection functions from G to G with composition as the
group operation. We’ll find a subgroup of A(G) isomorphic to G.

Let a ∈ G. we claim that the map ϕa : G→ G defined by ϕa(x) = ax is a bijection. This
follows from the fact that if ag = ah then g = h by cancellation. Thus ϕa is injective. For
h ∈ G we have a(a−1h) = h. So ϕa is surjective. Thus ϕa ∈ A(G). What we’ve shown
here is a correspondence between elements a ∈ G and functions ϕa : G→ G.

Define f : G→ A(G) by
a 7→ ϕa

For a,b ∈ G we have f(ab) = ϕab. This is the function ϕab(x) = (ab)x = abx. Observe
that

ϕab(x) = (ab)x = ϕa(bx) = ϕaϕb(x) = (ϕa ◦ϕb)(x)
This implies that f is in fact a homomorphism. Notice that

ker f = {a ∈ G : ϕa(x) = eG} = {a ∈ G : ax = eG for all x ∈ G} = {eG}

Thus f is injective. This implies by Theorem 9.3 (4) we have G ∼= Im(f) 6 A(G).
�

Corollary 9.6. Let G be a group. Let |G| = n. Then G is isomorphic to a subgroup of Sn.

See the discussion in BH on page 222. These remarks put Cayley’s Theorem into context
and do well explaining why Cayley’s theorem, though powerful, is not too profitable in
terms of applicability.
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In these days the angel of topology and the devil of abstract algebra fight for the
soul of every individual discipline of mathematics.

– Herman Weyl32

In this section we’ll study congruence in groups. Recall that we’ve seen this in the
Z, F[x] and general rings R/I. The results will be very similar for groups.

For a ≡ b mod 4 means that 4|a− b, i.e. a− b is a multiple of 4. Let

K = {0,±4,±8, . . .}
Thus

a ≡ b mod 4 ⇐⇒ a− b ∈ K
Notice that K 6 Z. What subgroup is it? K = 〈4〉, the cyclic subgroup generated by 4.

Thus instead of thinking of congruence modulo an element 4, we think of congruence
modulo the subgroup K:

a ≡ b mod K ⇐⇒ a− b ∈ K
We can apply this idea for any subgroup K 6 G, not just the cyclic subgroups. This will

motivate the definition of congruence for groups - Definition 8.1; recall that in general
group notation in multiplicative.

To paraphrase David Foster Wallace, we may lodge the obvious complaint/observation
here: ‘We’ve Seen This Before’.33 This should all look quite familiar by now:

(1) We introduce a definition and notation for congruence a ≡ b mod K ⇐⇒ a−
b ∈ K

(2) We show thinking about congruence is equivalent to considering cosets, i.e. Ka =
Kb ⇐⇒ a = b mod K

(3) We introduce a (quotient group) operation on cosets (Ka) · (Kb) = K(ab), we
show that K must be a normal subgroup for this operation to be well defined (this
corresponds to ideals in rings)

(4) We show normal subgroups arise as kernels, and relate homomorphisms and
quotient groups

8. Group Theory: Congruence, Normality and Quotients

For rings we defined congruence using ideals I. We said that a ≡ b mod I if a− b ∈ I.
We now frame this for groups.

Definition 8.1. Let K 6 G. Let a,b ∈ G. Then a is congruent to b modulo K, written
a ≡ b mod K, if ab−1 ∈ K.

Theorem 8.2. Let K 6 G. Then the relation of congruence modulo K is
(1) reflexive: a ≡ a mod K
(2) symmetric: if a ≡ b mod K then b ≡ a mod K
(3) transitive: if a ≡ b mod K and b ≡ c mod K then a ≡ c mod K

32Weyl, H. (1939). Invariants. Duke Mathematical Journal, 5(3), 489-502. Note that this was about 80 years
ago. By now algebra and topology have joined forces to form algebraic topology; any dueling for souls is
perhaps now being done against hedge funds.

33DFW. Consider the Lobster.
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Proof. (1) aa−1 ∈ K. Thus a ≡ a mod K.
(2) Let a ≡ b mod K. Then ab−1 ∈ K. Since K is a subgroup ba−1 = (ab−1)−1 ∈ K.
(3) Let a ≡ b mod K and b ≡ c mod K. Then ac−1 = a(b−1b)c−1 = (ab−1)(bc−1) ∈

K.
�

Let K 6 G. Let a ∈ G. The congruence class of a modulo K is the set of elements of G
congruent to a modulo K, i.e.

{b ∈ G : b ≡ a mod K} = {b ∈ G : ba−1 = k ∈ K} = {ka : k ∈ K}
We define Ka = {ka : k ∈ K}. This is called a right coset of K in G. When the group is
abelian, i.e. the operation is denoted +, then we use the notation a+K for the coset.34

Proposition 8.3. Let K 6 G. Let a, c ∈ G. Then a ≡ c mod K if and only if Ka = Kc.

Proof. Let a ≡ c mod K. Let x ∈ Ka. Then x = ka. We have ac−1 = k ′ ∈ K. Thus
x = ka = k(k ′c) = (kk ′)c. So x ∈ Kc and Ka ⊆ Kc. By symmetry c = a mod K and a
similar argument shows Ka ⊆ Kc.

Let Ka = Kc. a = ea ∈ Ka = Kc. Thus a = kc so ac−1 ∈ K. �

Corollary 8.4. Let K 6 G. Then either Ka∩Kc = ∅ or Ka = Kc.

Figure 11. A schematic diagram for cosets of K 6 G. Notice that e ∈ K
since K is a subgroup. Kb = Kc ⇐⇒ b ≡ c mod K ⇐⇒ b − cK.
Another way to think about this is that we are setting/collapsing the entire
subgroup K ‘to zero’. Thus ‘b = c ′ ⇐⇒ b− c ∈ K (i.e. versus b = c ⇐⇒
b− c = 0). This is what it means to think modulo K.

We’ll develop some facts about cosets.

Theorem 8.5. Let K 6 G. Then
(1) G is the union of right cosets of K: G =

⋃
a∈G Ka

(2) For each a ∈ G there is a bijection f : K → Ka. Thus if K is finite, any two right cosets
have the same number of elements

Proof. (1) Every right coset Ka ⊆ G. Thus
⋃
a∈G Ka ⊆ G. Let b ∈ G. Then b ∈ Kb ⊆⋃

a∈G Ka.
(2) Define f : K → Ka by f(x) = xa. Then if f(x) = f(y) we have xa = ya implying

x = y. So f is injective. For b ∈ Ka we have b = ka for k ∈ K. Thus f(k) = ka = b.
Thus f is surjective. (Is f a homomorphism? No, f(ab) = kab 6= kakb in general).

�
34This should look very familiar - this is precisely what we did for rings.
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If H 6 G the number of distinct right cosets of H in G is called the index of H in G. This
is denoted [G : H]. If G is finite, there are only a finite number of cosets so [G : H] is
finite. If G is infinite, then [G : H] may be infinite or finite.

Here’s an example. Consider the group Z. Let H = 〈3〉. Recall 〈3〉 = 3Z. The cosets of
H are the congruence classes mod H. We have H, 1+H, 2+H. Thus [Z : H] = 3.

Any example of infinite index would be, say, [Q : Z]. This holds, for instance, as the
numbers 1

n for n > 1 have distinct cosets relative to Z.

Theorem 8.6 (Lagrange’s Theorem). Let K 6 G with |G| < ∞. Then |G| = [G : K]|K|. In
particular |K| | |G|, i.e. the order of K divides the order of G.

Proof. Suppose [G : K] = n. Then there are n distinct cosets Kc1,Kc2, . . . Kcn. We know

G = Kc1 ∪Kc2 . . .∪Kcn

by Theorem 8.5. These cosets are distinct, thus mutually disjoint by Corollary 8.4. There-
fore |G| = |Kc1|+ |Kc2|+ . . .+ |Kcn|.35 For each ci we have |Kci| = |K| by Theorem 8.5.
Thus

|G| = n|K| = |K|[G : K]

�

Corollary 8.7. Let G be a group with |G| <∞.
(1) If a ∈ G then the order of |a| divides |G|
(2) If |G| = k then ak = e for every a ∈ G

Proof. (1) We have that |a| = |〈a〉|. Thus |G| = [G : 〈a〉]|a|.
(2) If |a| = n. Then n|k. Thus k = nt so ak = ant = (an)t = et = e.

�

8.1. The Structure of Finite Groups. See Page 242 in BH for remarks on the classifica-
tion of groups. We’ll recapitulate these remarks.

A major goal of group theory is to classify all finite groups up to isomorphism, i.e.
produce a list of groups such that every finite group is isomorphic to exactly one group
on the list. This is basically a look up table for isomorphism. This is very difficult in
general.36 We’ll see in this section that we can classify all cyclic groups and groups of
prime order (which turn out to just be cyclic groups). We’ll do this using Lagrange’s
theorem, and the idea that the order of elements and subgroups must divide the order
of the group. We’ll also see some classification for groups of small order.

Here is a classification of cyclic groups.

Theorem 8.8 (Theorem 7.19 in BH). Let G be a cyclic group.
(1) If G is infinite, then G ∼= Z.
(2) If |G| = n then G ∼= Zn

35Notice this follows from an elementary set theoretic fact about cardinalities: if A∩B = ∅ then |A∪B| =
|A|+ |B|.

36See Chapter 9 in BH for more techniques to do this: e.g. Sylow theorems, structure theorem for finite
abelian groups, etc.
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Proof. (1) Let G = 〈a〉 = {ak : k ∈ Z}. Define f : G → Z by f(ak) = k. G infinite
implies ai = aj if and only if i = j (Theorem 7.15), thus f is injective. f is
surjective as for k ∈ Z we have ak 7→ k. f(aiaj) = f(ai+j) = i+ j = f(ai) + f(aj).
Thus G ∼= Z.

(2) Let G = 〈b〉 with |b| = n. G = {b0,b1, . . . ,bn−1} by Theorem 7.15. We have
Zn = {[0], [1], . . . , [n− 1]}. Define g : G→ Zn by g(bi) = [i]. g is clearly a bijection
and g(bibj) = g(bi+j) = [i+ j] = [i] + [j] = g(bi) + g(bj). Thus G ∼= Zn.

�

Here is a classification for groups of prime order.

Theorem 8.9. Let |G| = p with p prime. Then G is cyclic and G ∼= Zp.

Proof. Let a ∈ G with a 6= e. Then |a||p. But |a| > 1. Thus |a| = p. Therefore 〈a〉 = G and
G is a cyclic group of order p, so G ∼= Zp by Theorem 9.7. �

Now here are some classifications for groups of small order.

Theorem 8.10. Let G be a group with |G| = 4. Then G ∼= Z4 or G ∼= Z2 ×Z2.

Proof. If G contains an a ∈ G of order 4 then 〈a〉 = G so G ∼= Z4. If G has no elements
of order 4, then for a ∈ G with a 6= e we have |a| = 2. Thus G = {e,a,b, c} with
a = a−1,b = b−1, c = c−1. Thus the product any two distinct a,b, c is the third, i.e.
ab = ba = c, cb = bc = a, ca = ac = b. Define f : G→ Z2 ×Z2 as

e 7→ (0, 0) a 7→ (1, 0) b 7→ (1, 0) c 7→ (1, 1)

Then, for instance, f(ac) = f(b) = (1, 0) = (0, 1)+ (1, 1) = f(a)+ f(c). It’s straightforward
that this holds in general. �

The following theorem appears as Theorem 8.9 in BH. You should read this proof as it
is done with very elementary group theory. For our part, we’ll come back and proof this
once we have more algebraic tools.37

Theorem 8.11. Let G be a group with |G| = 6. Then G ∼= Z6 or G ∼= S3.

As summarized in BH, page 245, we now have classification for all groups of order less
than 7. For |G| = 2, 3, 5, 7 we have that these are primes, thus G ∼= Zp. For |G| = 4 we
showed G ∼= Z4, Z2 ×Z2. For |G| = 6 we have G ∼= Z6,S3.

In many areas of mathematics, there are ways of ‘building things up’ and ‘breaking
things down’.

– Norman Block38

37This gets back to Grothendieck’s contrast between the philosophy of chisel/hammer v. ‘the rising sea’.
See the endnotes of the Chapter 6 Notes. Put briefly: develop the encompassing algebraic theory/tools
until your problem becomes trivially soluble.

38Attributed N. Block. Abstract Algebra with Applications. in Gallian’s Contemporary Abstract Algebra.
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9. Normal Subgroups

Let K 6 G. Our goal of this section is to make a group out of the cosets {Ka}. This
means we need to define a group operation on the set of cosets.

Recall how we set up congruence in the integers as a mod n+ b mod n = (a+ b)
mod n. The operation being ‘well-defined’ depended upon a key result:

a ≡ b mod n, c ≡ d mod n =⇒ a+ c mod n = b+ d mod n
The subgroup version of this would be

a ≡ b mod K, c ≡ d mod K =⇒ ac ≡ bd mod K

Unfortunately, this is not true in general. We’ll only be concerned with subgroups that
do satisfy such a property.

Let K 6 G. Recall that Ka = {ka : k ∈ K} was called the right coset. Similarly, there is a
left coset, aK = {ak : k ∈ K}. In general, aK 6= Ka.

Here’s an example. Consider D4 - the set of symmetries of the square. Let s be a
reflection (say, over x-axis). Consider K = {e, s} = 〈s〉 6 D4. Let t be reflection over
x = y. Then we say that t = r ◦ s, where r was the (elementary) rotation by 90◦. Then
tK 6= Kt, as

tK = {te, ts} = {t, (rs)s} = {t, r} Kt = {et, st} = {t, s(rs)} = {t, r3}

Definition 9.1. A subgroup N 6 G is normal if Na = aN for every a ∈ G. Denoted
N E G.39

An observation: if N 6 G and G is abelian then an = na for every a ∈ G and n ∈ N.
Thus Na = aN. In particular, every subgroup of an abelian group is normal.

For any group G the center Z(G) 6 G is always a normal subgroup, i.e. Z(G) E G. This
is because for a ∈ G and n ∈ Z(G) we have an = na by definition.

Importantly, aN = Na does not imply that na = an for every n ∈ N.
Now the theorem:

Theorem 9.2. Let N E G. If a ≡ b mod N and c ≡ d mod N then ac ≡ bd mod N.

Proof. We want to show that (ac)(bd)−1 ∈ N. We have ab−1 = m and cd−1 = n for
m,n ∈ N. We compute

(ac)(bd)−1 = (ac)(d−1b−1) = a(nb−1) by normality there exists n ′ ∈ N so b−1n ′ = nb−1

= ab−1n ′

= mn ′ ∈ N
�

It is often useful to have alternative characterizations/methods-of-thinking about nor-
mality.

Theorem 9.3. The following conditions on N 6 G are equivalent:
(1) N E G
(2) a−1Na = N for all a ∈ G where a−1Na = {a−1na : n ∈ N}

39Similar to subgroup notationN 6 G, you won’t find the notationN E G in BH. However, it is featured
in most algebra texts.
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Proof. Let N E G. Fix a ∈ G. Then aN = Na. We wish to show a−1Na = N. Consider
a−1na. We have na = an ′ by normality. Thus a−1(na) = a−1(an ′) = n ′ ∈ N. Now let
n ∈ N. Then n = (a−1a)n(a−1a) = a−1(ana−1)a = a−1n ′a ∈ a−1Na. The last equality,
that ana−1 = n ′ follows from what we just proved. Thus a−1Na = N.

Now suppose a−1Na = N for all a ∈ G. We want to show N E G. Fix b ∈ G, we
wish to show bN = Nb. For bn ∈ bN we have bnb−1 = n ′ ∈ N (apply hypothesis
with a = b−1). Thus bn = n ′b ∈ Nb. For nb ∈ Nb we have b−1nb = n ′ ∈ N. Thus
nb = bn ′ ∈ bN. So bN = Nb. Thus N E G. �

Quotient Groups

Let N E G. Let G/N denote the set of right cosets of N in G, i.e. G/N = {Na : a ∈ G}.
Our goal in this section is to define an operation on G/N and turn it into a group. All

of our previous work in Z, F[x] and general rings suggests an approach:

(Na)(Nb) = Nab

We must verify that this is will defined (this is, of course, where normality will play a
role and the work we did in the last section will come into play).

Theorem 9.4. Let N E G. If Na = Nc and Nb = Nd in G/N then Nab = Ncd.

Proof. Na = Nc implies a ≡ c mod N. Nb = Nd implies b ≡ d mod N. Thus ab ≡ cd
mod N. Thus Nab = Ncd. �

The group G/N is called the quotient group of G by N. Pronounced “G mod N”.

Theorem 9.5. Let N E G. Then
(1) G/N is a group with operation (Na)(Nb) = N(ab)
(2) if G is finite, then |G/N| = |G|/|N|

(3) If G is abelian then G/N is abelian

Proof. (1) The operation is well-defined by Theorem 9.4. It is straightforward that it
is closed. It is associative since the operation in G is associatve, i.e.: Na(NbNc) =
Na(Nbc) = Nabc = (Nab)Nc = (NaNb)Nc. There are four group axioms to
show. It is easy to verify that Ne is the identity and Na−1 is the inverse of Na.

(2) By Lagrange’s Theorem: |G| = [G : N]|N|. There are [G : N] distinct cosets, the
number of distinct cosets. Thus |G|/|N| = [G : N].

(3) NaNb = Nab = Nba = NbNa for all a,b ∈ G.
�

There are quite a few examples provided in pages 256-259 in BH (D4, Zn, etc) it is very
useful to look at these and internalize them.

9.1. The Structure of Groups. As we said in Chapter 1, algebra is a study in structure.
For N E G the structure of G,N and G/N are related40, and if we want to understand
the structure of any one in particular of these groups, we can extract information by
investigating the other two. Here are some (simple) examples of this general principle.

Theorem 9.6. Let N E G. Then G/N is abelian if and only if aba−1b−1 ∈ N for all a,b ∈ G.
40In particular they are related by morphisms, as we will see in 8.4! (and as we saw in rings)
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Proof. G/N is abelian if and only if NaNb = NbNa for all a,b ∈ G. By definition, this
holds if and only if Nab = Nba. Nab = Nba holds if and only if ab(ba)−1 ∈ N, i.e. if
and only if aba−1b−1 ∈ N. �

We have that Z(G) E G.

Theorem 9.7. If G/Z(G) is cyclic, then G is abelian.

Proof. Let a,b ∈ G. If G/Z(G) is cyclic then G/Z(G) = 〈Z(G)c〉 for some c. Thus
Z(G)a = (Z(G)c)k = Z(G)ck and Z(G)b = (Z(G)c)m = Z(G)cm. Thus a = zck and
b = z ′cm with z, z ′ ∈ Z(G). Thus ab = zckz ′cm = zz ′ck+m = z ′ckzcm = ba �

Theorem 9.7 can be a bit of a strange to wrap your head around, as if G/Z(G) is cyclic
then G is abelian. But then Z(G) = G. Thus G/Z(G) = 〈Ne〉. However, it turns out
to be very useful in small order group classification. You can also think about it as the
contrapositive: if G is not abelian then G/Z(G) is not cyclic.

The study of quotient groups will turn out to be equivalent to the study of homomor-
phisms of G - this will be similar to ring theory, as all normal subgroups will arise as
kernels of some morphism, and we’ll have a First Isomorphism Theorem (for groups).

10. Quotient Groups (via Fibers)

If f : G→ H is a group homomorphism, recall that the fibers of f are the sets f−1(h) for
h ∈ H. Notice that if f is surjective, then the fibers {f−1(h)}h∈H partition G. See Figure 12

for a schematic of fibers for a surjective homomorphism f : G→ H.41 Dummit and Foote
(D+F) at [2] offers an excellent exposition in Chapter 3.

Figure 12. The fibers of f are the sets of elements of G which project to
single elements of H, i.e. f−1(h) is the set of all elements b such that b 7→ h.
This is a schematic, where the vertical line in the box G above the point h
depicts the fiber f−1(h).

41This image is used in Ch. 3 of Dummit and Foote. This picture shows the namesake of the term fiber.
(This is also the quintessential schematic for fiber bundle; see [5] for a beautiful introduction/exposition in
a physics setting).
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The group operation in H provides a way to multiply two elements in the image of f -
i.e. two elements on the horizontal. This suggests a natural product on the fibers lying
above the two points - this would make the set of fibers into a group. See Figure 13. For
a,b ∈ H let Fa = f−1(a) (the fiber above a) and Fb = f−1(b) (the fiber above b). We’ll
define the product Fa · Fb = Fab, i.e. the fiber lying above ab ∈ H. This is associative
since the operation in H is associative. The identity, will be FeH and the inverse of Fa will
be Fa−1 .

Figure 13. We make a group out of the fibers of f. For a,b ∈ H. We
have a product a · b, abbreviated ab. This suggests a product on fibers:
FaFb = Fab. We can then check the group axioms!

Let’s do an example using this picture. Take G = Z and H = 〈a〉 with |H| = n, i.e. H is
the cyclic group of order n. There is a natural homomorphism f : G→ H given by

Z 3 m 7→ am

It is straightforward that f is a surjective homomorphism. Let’s compute the fiber over
ak.

f−1(ak) = {m ∈ Z : am = ak} = {m ∈ Z : am−k = eH} = {m ∈ Z : m ≡ k mod n} = [k]n

The second to last equality follows from Theorem 7.9, and fact that a has order n.
Thus Fak , the fiber of ak, is the congruence class [k]n. Now Fai , Faj be fibers over ai

and aj respectively. We defined the operations on fibers as Fai · Faj = Faiaj = Fai+j . Since
we know that the fibers are precisely congruence classes, this is equivalent to saying
that [i]n · [j]n = [i+ j]n. This is exactly how we set up modular arithmetic in Zn. See
Figure 14.

What we’ve shown so far is that one can define a quotient group in terms of fibers.
What we did previously was define a quotient group in terms of cosets. What’s the
relationship? Well the quotient group defined with fibers requires the homomorphism
f explicitly, since the operation on fibers was defined by first projecting the fibers to
H, using the product in H, then determining the fiber over this product. It is possible
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Figure 14. Here G = Z and H = 〈a〉 with order n, i.e. the cyclic sub-
group of order n. The map is m 7→ am. The fibers of ak is precisely the
congruence classes [k]n. Thus the elements of the quotient group are the
congruence classes, so this group is Zn! Furthermore, notice that the fibers
are all just translates by 〈n〉, i.e. these are the cosets of the subgroup 〈n〉.

to define an operation on the fibers directly in terms of cosets, thus f will not enter
explicitly. A natural question is then, are the fibers of a homomorphism the cosets of
some subgroup?42 Indeed, the fibers are the cosets of ker f, i.e. a,b belong to the same
fiber f−1h if and only if we have the coset equality Ka = Kb where K = ker f. Notice that
another way of saying that a and b belong to the same fiber is to say f(a) = f(b).

Theorem 10.1 (Lemma 8.19, [4]). Let f : G→ H be a group homomorphism with kernel K. Let
a,b ∈ G. Then

f(a) = f(b) ⇐⇒ Ka = Kb

Proof. We have that

f(a) = f(b) ⇐⇒ f(a)f(b)−1 = eH ⇐⇒ f(ab−1) = eH ⇐⇒ ab−1 ∈ ker f = K ⇐⇒ Ka = Kb

�

That’s slick. Let’s spell this out a little more. Notice that if ab−1 ∈ ker f then a = kb
with k ∈ ker f. Then f(a) = f(kb) = f(k)f(b) = eHf(b) so f(a) = f(b). In other words,
the product of b with any element of ker f has the same functional value f(b) = f(a). So
another way of thinking about ker f is as a container for all of the elements that when
multiplied by an element don’t change its functional value. The First Isomorphism
Theorem for groups basically falls out of this perspective: it states we can then take G
and mod out by ker f to get im(f). But of course this happens, since by construction our
quotient group was the collection of fibers {Fa} which is in bijection correspondence with
im(f). Furthermore we saw that it turned out that if b ∈ Fa then Fa = Kb since the fiber
of Fa consists of all elements that map to a, but thats precisely kb for each k ∈ ker f.

Time for an example. Let G = R ×R = R2 (product group operation i.e. (x,y) +
(x ′,y ′) = (x+ x ′,y+ y ′). Let H = R. Define f : R2 → R by f((x,y)) = x, i.e. projection
on the x-axis (first coordinate). Then f is a homomorphism as f

(
(a,b) + (c,d)

)
= f
(
(a+

42This is precisely the content of WS8 prob 4.
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c,b+ d)
)
= a+ c = f(a,b) + f(c,d). A quick computation shows that

ker f = {(x,y) ∈ R2 : f(x,y) = 0} = {(0,y) : y ∈ R} = the y-axis

Note ker f is a subgroup of R2 and the fiber of f over a ∈ R is the translate of the y-axis
by the line x = a. This is precisely the coset a+K. See Figure 15.

Figure 15. f is the projection of R×R onto the first coordinate (x,y) 7→ x.
ker f is the y-axis. The fibers are translates of ker f, i.e. a+ ker f.

Mathematicians do not study objects, but relations among objects; they are indif-
ferent to the replacement of objects by others as long as relations do not change.
Matter is unimportant, only form interests them.

– Henri Poincaré43

8. Homomorphisms, Quotient Groups

We’ve seen the definition of kernel before. Recall:

Definition 8.1. Let f : G→ H be a homomorphism of groups. Then the kernel of f is the
set ker f = {a ∈ G : f(a) = eH}. Equivalently, ker f = f−1(eH), i.e. the fiber above eH.

We saw that ideals corresponded to kernels in rings. We now have a similar result for
groups.

Theorem 8.2. Let f : G→ H be a group homomorphism. Then ker f E G.

Proof. We’ve seen that K = ker f is subgroup. We show that it is normal. By Theorem 8.11

it suffices to show a−1aK ⊂ K. Let a ∈ G and c ∈ K. We wish to show that a−1ca ∈ K.
We have f(a−1ca) = f(a−1)f(c)f(a) = f(a)−1eHf(a) = f(a)−1f(a) = eH. Thus a−1ca ∈ K.
So K is normal. �

43May be found in Gallian’s Contemporary Abstract Algebra.
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Theorem 8.2 says that every kernel is a normal subgroup.
Figure 16 is an image similar to one in Artin’s Algebra, Chapter 5. It again depicts a

schematic of a group homomorphism, but is closer to what we’ve drawn previously.

Figure 16. Schematic diagram of a homomorphism f : G→ H with ker f =
N which is the fiber over e and coset Na which is precisely the fiber over
a.

Theorem 8.3. Let f : G→ H be a group homomorphism. Then ker f = 〈eG〉 ⇐⇒ f is injective.

Proof. Let ker f = 〈eG〉. Then f(a) = f(b) =⇒ f(a)f(b)−1 = eG =⇒ f(ab−1) = eG =⇒
ab−1 ∈ ker f =⇒ a = b. If f is injective then for c ∈ ker f we have f(c) = e ′H = f(eG) =
implies c = eG. �

The following theorem says that every normal subgroup is a kernel.

Theorem 8.4. Let N E G. Then the map π : G → G/N given by π(a) = Na is a surjective
homomorphism with kerπ = N.

Proof. π is surjective since for any coset Na in G/N we have π(a) = Na. π is also a
homomorphism as π(ab) = Nab = NaNb = π(a)π(b). Then

kerπ = {a ∈ G : π(a) = Ne} = {a ∈ G : Na = Ne} = {a ∈ G : ae−1 ∈ N} = {a : G : a ∈ N} = N

�

π is sometimes called the natural homomorphism. Thus every normal subgroup arises as
a kernel of the natural homomorphism π.

Lemma 8.5. Let f : G → H be a group homomorphism with K = ker f. Let a,b ∈ G. Then
f(a) = f(b) if and only if Ka = Kb.

Proof. If f(a) = f(b) then f(a)f(b)−1 = eH so f(ab−1) = eH. Thus ab−1 ∈ ker f = K. Thus
Ka = Kb.

If Ka = Kb then ab−1 ∈ K so eH = f(ab−1) = f(a)f(b)−1. Thus f(b) = f(a). �

Theorem 8.6 (First Isomorphism Theorem). Let f : G → H be a surjective homomorphism.
Then G/ker f ∼= H.
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Proof. Let K = ker f. Define ϕ : G/ker f → H by ϕ(Ka) = f(a). We need to know ϕ is
well-defined, i.e. its value depends only on the coset, not the representative. Suppose
Ka = Kb. Then by Lemma 8.5 we have f(a) = f(b). So ϕ(Ka) = ϕ(Kb). So ϕ is
well-defined.

To show ϕ is surjective, let h ∈ H. f is surjective so there is a ∈ G with f(a) = h. Then
ϕ(Ka) = f(a) = h. To see ϕ injective, suppose ϕ(Ka) = ϕ(Kb). Then f(a) = f(b). Thus
Ka = Kb by Lemma 8.5, so ϕ injective. Finally ϕ is a homomorphism as ϕ(KaKb) =
ϕ(Kab) = f(ab) = f(a)f(b) = ϕ(Ka)ϕ(Kb).

�

Here’s an example. Let G,H be groups. Define f : G×H→ G by f(a,b) = a. Then f is
a surjective homomorphism. ker f = {(eG,h) : h ∈ H} = eG×H. Thus G×H/eG×H ∼= G.

8.1. Subgroups of Quotient Groups. In this section we investigate the subgroups of the
quotient group G/N. We do the Third Isomorphism Theorem for Groups, and some
correspondences.

Theorem 8.7. Let N E G. Let N 6 K 6 G. Then K/N 6 G/N.

Proof. We show N E K. Since Na = aN for every a ∈ G we have Na = aN for every
a ∈ K. So N E K and K/N is a group. The elements of K/N are the cosets Na for a ∈ K.
Thus K/N ⊂ G/N, and since K/N is a group itself we have K/N 6 G/N. �

Theorem 8.8 (Third Isomorphism Theorem). Let K,N E G with N 6 K 6 G. Then
K/N E G/N and (G/N)/(K/N) ∼= G/K.

Proof. The idea is to define a surjective homomorphism from G/N → G/K with kernel
K/N. The conclusion then follows by First isomorphism theorem.

Define f : G/N→ G/K by f(Na) = Ka. We claim this is well-defined. If Na = Nb then
ab−1 ∈ N ⊂ K. Thus Ka = Kb. So f is well-defined.
f is surjective as for Ka we can choose Na and f(Na) = Ka. We compute ker f.

ker(f) = {Na ∈ G/N : f(Na) = Ke} = {Na : Ka = K} = {Na : a ∈ K} = K/N
Thus K/N E G/N since it arises as a kernel. Furthermore by First Iso. Thm (G/N)/(K/N) =

(G/N)/ ker f ∼= G/K
�

Theorem 8.9. Let f : G → H be a group homomorphism. Let M E H and N = f−1(M). Then
N E G.

Proof. Let a ∈ G and n ∈ N. We show a−1na ∈ N. We have f(a−1na) = f(a−1)f(n)f(a) ∈
M since f(n) ∈M. Thus N E G. �

The following two theorems are the ‘correspondence theorems’, which we saw previ-
ously for rings, and then in the Exam 2 prep.

Corollary 8.10 (Corollary 8.23 [4]). Let N E G. Let K 6 G with N ⊂ K. Then K E G if and
only if K/N E G/N.

Proof. Let K E G. Then K/N E G/N by Third Iso. Thm. Now let K/N E G/N. Then
from the correspondence theorem K = π−1(K/N) where π is the natural homomorphism
π : G→ G/N. K = π−1(K/N) E G. by Theorem 8.9.

�
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We now have complete information about the subgroups of G/N that arise from sub-
groups of G that contain N.

Corollary 8.11 (Theorem 8.24 [4]). If T is any subgroup of G/N then T = H/N where H is a
subgroup of G that contains N.
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The notion of a ‘group’, viewed only 30 years ago as the epitome of sophistication,
is today one of the mathematical concepts most widely used in physics, chemistry,
biochemistry, and mathematics itself.

– Alexei Sossinski44

9. Topics in Group Theory

Chapter 9 we look at some deep results in finite group theory. We address the classi-
fication of all finite abelian groups. We begin a path toward Sylow’s Theorems, looking
at the idea of conjugacies. We cover 9.1-9.2 and the beginning of 9.4.

10. Direct Products

The universe is an enormous direct product of representations of symmetry groups.
– Steven Weinberg45

Let G,H be groups. Then G × H is also a group as we’ve seen. In this section we
look at the conditions under which a group is isomorphic to a direct product of certain
subgroups.

Let G1,G2, . . . Gn be groups. Define coordinate-wise operation as

(a1,a2, . . . ,an)(b1,b2, . . . ,bn) = (a1b1,a2b2, . . . ,anbn)

It’s easy to verify that G1×G2× . . .×Gn is a group. Notice (e1, e2, . . . , en) is the identity
and with inverses (a−11 ,a−12 , . . . ,a−1n ).

This group is called the direct product of G1,G2, . . . ,Gn. A remark on notation: when
each Gi is abelian, that the direct product is often called the direct sum and denoted
G1 ⊕G2 ⊕ . . . Gn.

Consider the group Z6. Notice that M = {0, 3} and N = {0, 2, 4} are subgroups. Every
element of Z6 can be written as a sum of elements in M and N, i.e. 1 = 4 + 3 and
5 = 3+ 2. So Z6

∼=M×N.

Lemma 10.1. Let M,N E G such that M∩N = 〈e〉. If a ∈M and b ∈ N then ab = ba.

Proof. Consider a−1b−1ab. M is normal so b−1ab ∈ M. By closure of M we have
a−1b−1ab ∈ M. We have a−1b−1a ∈ N. Closure implies a−1b−1ab ∈ N. Thus
a−1b−1ab ∈M∩N = 〈e〉. Therefore ab = ba. �

Theorem 10.2. Let N1,N2 . . . ,Nk be normal subgroups of G such that every element in G can
be written uniquely as a1a2 · · ·ak with ai ∈ Ni. Then G ∼= N1 ×N2 × . . .×Nk.

Remark 10.3. Uniqueness here means if a1a2 · · ·ak = b1b2 · · ·bk with ai,bi ∈ Ni then ai =
bi.

Proof. Define a map
f : N1 ×N2 × · · · ×Nk → G

by f(a1,a2, . . . ,ak) = a1a2 · · ·ak) Every element of G can be written in that form,
so f is surjective. If a1a2 · · ·ak = f(a1,a2, . . . ,ak) = f(b1,b2, . . . ,bk) = b1b2 · · ·bk

44Found in Gallian.
45Found in Gallian.
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then a1a2 · · ·ak = b1b2 · · ·bk. By uniqueness this means ai = bi for each i. Thus
(a1,a2, . . . ,ak) = (b1,b2, . . . ,bk). So f is injective.

It remains to show that f is a homomorphism. We want to apply Lemma 10.1. Notice
that if a ∈ Ni∩Nj then a can be written as a = e1e2 · · · ei−1aei+1 · · · ek = e1e2 · · · ej−1aej+1 · · · ek.
Here ei just means e in the ith position. By uniqueness this forces a = e.

f
(
(a1, . . . ,ak)(b1, . . . ,bk)

)
= f(a1b1, . . . ,akbk) = a1b1a2b2 · · ·akbk = a1a2 · · ·akb1b2 · · ·bk

(This is done by commuting each ai left)
Thus f is an isomorphism.

�

Depending upon the context we can think of G as the external direct product of the
Ni, i.e. tuples (a1,a2, . . . ,ak) or as an internal direct product where elements are written
a1a2 · · ·ak.

If M,N 6 G let MN = {mn : m ∈ N,n ∈ N}. The following theorem is often easier to
apply than Theorem 10.2.

Theorem 10.4. If M,N E G with G =MN and M∩N = 〈e〉 then G =M×N.

Proof. We have every element of G is of the form mn. Suppose mn = m ′n ′. Then

mn = m1n1

m−1
1 m = n1n

−1

But m−1
1 m ∈ M and n1n−1 ∈ N. Thus m−1

1 m = e = n1n
−1 so m1 = m and n1 = n.

This implies every element in G can be written uniquely in the form mn for m ∈M and
n ∈ N. Thus G =M×N by Theroem 10.2.

�

11. Finite Abelian Groups

In this section we will classify all finite abelian groups! We shall prove that every finite
abelian group G is a direct sum of cyclic subgroups and that their orders are determined
by G.

All groups in this section will therefore be abelian. Thus we will use additive notation.
BH has translations, and we’ll review it here as well.

Multiplicative Notation Additive Notation

ab a+ b
e 0

ak ka
MN M+N

direct product M×N direct sum M⊕N
direct factor M direct summand M

We recall three theorems, now written in additive notation.

Theorem 11.1. Let G be abelian. Let a ∈ G. Then
(1) If |a| = n then ka = 0 if and only if n|k.
(2) If a has order td with d > 0 then ta has order d.
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Theorem 11.2. If N1, . . . ,Nk are normal subgroups of abelian group G such that each element
of G can be written uniquely in the form a1 + a2 . . .+ ak with ai ∈ Ni. Then G ∼= N1 ⊕N2 ⊕
· · · ⊕Nk.

Theorem 11.3. If M,N 6 G with G =M+N and M∩N = 〈0〉 then G =M⊕N.

Let G be abelian group and let p be prime. Let G(p) = {a ∈ G : |a| = pn some n > 0}.

Proposition 11.4. G(p) 6 G

Proof. G(p) is nonempty as e has order 1 = p0. Let a,b ∈ G(p) with orders pk,pm. Then
(pkpm)(a+ b) = (pmpk)a+ (pkpm)b) = 0. pk(−a) = −pka = 0. �

Here’s example. Let G = Z12. Then G(2) has elements of order 20, 21, . . .. G(2) =
{0, 3, 6, 0}.

Lemma 11.5. Let G be abelian group. Let a ∈ G with |a| < ∞. Then a = a1 + a2 + . . .+ at
with ai ∈ G(pi) where p1, . . . ,pt are distinct positive primes that divide the order of a.

Proof. By Fundamental Theorem of Arithmetic |a| = p
n1
1 p

n2
2 · · ·p

nt
t . We induct on the

number of distinct primes that divide |a|, i.e. k.
The base case: if |a| = p1, i.e. divisible by only a single prime, then the order of |a| is

prime, so a ∈ G(p1). Thus the Lemma holds.
Now assume the inductive hypothesis that the lemma is true for all elements whose

order is divisible by at most k− 1 distinct primes and that |a| is divisible by the distinct
primes |a| = p

n1
1 p

n2
2 · · ·p

nk
k with each ni > 0. Let m = p

n1
1 and n = p

n2
2 · · ·p

nt
t . Then

|a| = mn. Then (m,n) = 1 and by Bezout’s theorem there exist u, v with 1 = um+ vn.
Thus a = 1a = (mu+ vn)a = mua+nva.

But mua ∈ G(p1) since pn11 (mua) = nmua = u(nma) = 0. Similarly m(nva) = 0.
Thus |nva||m. m has only k− 1 distinct prime divisors. Thus by the inductive hypothesis
nva = a2 + a3 + . . . + ak. with ai ∈ G(pi). Let a1 = mua then a = mua + nva =
a1 + a2 + . . .+ ak with ai ∈ G(pi).

�

Theorem 11.6. If G is a finite abelian group, then

G = G(p1)
⊕

G(p2)
⊕
· · ·
⊕

G(pt)

where p1, . . . ,pt are distinct positive primes that divide the order of G.

Proof. If a ∈ G, then |a|||G| 46. Hence a = a1 + a2 + . . . + at with ai ∈ G(pi) by
Lemma 11.5. Here aj = 0 if pj 6 ||a|.

We prove this expression is unique, then apply Theorem.
If a1+a2+ . . .+at = b1+b2+ . . . bt with ai,bi ∈ G(pi then a1−b1 = (b2−a2) + (b3−
a3) + . . .+ (bt − at) and bi − ai ∈ G(pi) thus has order prii (i.e. some power of pi). If
m = pr22 · · ·p

rt
t then m(bi − ai) = 0 for i > 2, so that

m(a1 − b1) = m(b2 − a2) +m(b3 − a3) + . . .+m(bt − at) = 0

Thus the order of |a1 − b1||m.
But a1 − b1 ∈ G(p1) so its order is a power of p1. The only power of p1 that divides
m = pr22 · · ·p

rt
t is p01 = 1. Thus a1− b1 = 0 and a1 = b1. Similar arguments apply for any

46This was a corollary to Lagrange.
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i. Thus every element can be written in the form a1 + . . . at with ai ∈ G(pi) and thus
G = G(p1)⊕ · · · ⊕G(pt) by Theorem 10.2.

�

If p is prime then a group in which every element has order pn some n is called a
p-group. Thus each of the G(pi) is a p-group. An element a of p-group B is called an
element of maximal order if |b| 6 |a| for all b ∈ B.

If |a| = pn and b ∈ B with |b| = pj then j 6 n. pn = pjpn−j thus pnb = pn−jpjb = 0.
Thus if a is an element of maximal order pn in a p-group B then pnb = 0 for every b ∈ B.

Elements of maximal order always exist in a finite p-group.

Lemma 11.7 (Lemma 9.6 [4]). Let G be a finite abelian p-group and a an element of maximal
order in G. Then there is a subgroup K 6 G such that G = 〈a〉

⊕
K.

Proof. Proof in BH. �

Theorem 11.8. Every finite abelian group G is the direct sum of cyclic groups, each of prime
power47 order.

Proof. G = G(p1)⊕G(p2)⊕ . . .⊕G(pt) one for each pi||G| by Theorem 11.6. Each G(p) is
a p-group.

So it remains to show that every finite abelian p-group H is a direct sum of cyclic
groups, each of order a power of p.

We prove this by induction on the order of H. The base case is when |H| = 2. Then H is
cyclic.48

Now assume inductively (i.e. let the inductive hypothesis be) that it is true for p-
groups whose order is less than |H|.49 Let a be an element of maximal order pn in H.
The H = 〈a〉

⊕
K. Then H = 〈a〉 ⊕ K by Lemma 11.7. Notice that K is a p-group and

|K| < |H|. Thus by induction, K is a direct sum of cyclic groups, each with order a power
of p.

�

The number 36 can be written as a product of prime powers in four ways: 36 = 2×
2× 3× 3 = 2× 2× 32 = 22 × 3× 3 = 22 × 32. Thus Theorem 11.8 every abelian group of
order 36 must be isomorphic to one of the following groups:

Z2 ⊕Z2 ⊕Z3 ⊕Z3 Z2 ⊕Z2 ⊕Z9 Z4 ⊕Z3 ⊕Z4 Z4 ⊕Z9

One can verify that no two of the groups are isomorphic (for instance, check the numbers
of elements of order 2 or 3).

Lemma 11.9. If (m,k) = 1 then Zm

⊕
Zk

∼= Zmk.

Proof. The order of (1, 1) in Zm ⊕Zk is the smallest positive integer t such that (0, 0) =
t(1, 1) = (t, t). Then t ≡ 0 mod m and t ≡ 0 mod k so k|t and m|t. But (m,k) = 1
implies mk|t (least common multiple), so mk 6 t. But t is the smallest such integer, thus
mk = t = |(1, 1)|. Therefore Zm⊕Zk is a cyclic group of ordered nm generated by (1, 1)
and isomorphic to Zmk. �

47Meaning the order of a pk with p prime
48All groups of prime order are cyclic by Theorem 8.7 in BH
49i.e. The inductive hypothesis is that every p-group of order less than |H| is a direct sum of cyclic

groups, each of order a power of the prime p.
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Theorem 11.10. If n = pn11 p
n2
2 · · ·p

nt
t with p1, . . . pt distinct primes, then

Zn
∼= Z

p
n1
1

⊕
Z
p
n2
2

⊕
· · ·
⊕

Zp
nt
t

Proof. We’ll do induction on the order of the group. The base case when n = 2 is true.
Assume that it is true for groups of order less than n. Apply Lemma 11.9 with m = pn11

and k = p
n2
2 · · ·p

nt
t . Then Zn

∼= Z
p
n1
1
⊕ Zk. By the inductive hypothesis Zk

∼= Z
p
n2
2
⊕

· · · ⊕Zp
nt
t

. �

We now combine Theorems 11.10 and 11.8. This implies second a way of expressing a
finite abelian group as a direct sum of cyclic groups.

Consider the group

G = Z2 ⊕Z2 ⊕Z4 ⊕Z8 ⊕Z3 ⊕Z3 ⊕⊕Z3 ⊕Z5 ⊕Z25

Arrange the prime power orders of the cyclic factors by size with one row for each prime:

2 2 22 = 4 23 = 8
3 3 3

5 52 = 25
2 6 60 600

Now rearrange the cyclic factors of G using the columns, and apply Theorem 11.10.
Then

G ∼= Z2 ⊕Z6 ⊕Z60 ⊕Z600

The last decomposition is sometimes more convenient. There are fewer factors and the
order of each cyclic factor divides the order of the next one. This leads to the next
theorem:

Theorem 11.11. Every finite abelian group is the direct sum of cyclic groups of ordersm1,m2, . . . ,mt

where m1|m2|m3| · · · |mt−1|mt.

If G is finite abelian group then the integers m1, . . . ,mt in Theorem 11.11 are called the
invariant factors of G. When G is written as direct sum of cyclic groups of prime power
orders, the prime powers are called the elementary divisors of G.

Here’s an example. All abelian groups of order 36 can be classified up to isomorphism
in terms of their elementary divisors or their invariant factors:

Group Elementary Divisors Invariant Factors Isomorphic Group

Z2 ⊕Z2 ⊕Z3 ⊕Z3 2, 2, 3, 3 6, 6 Z6 ⊕Z6

Z2 ⊕Z2 ⊕Z9 2, 2, 32 2,18 Z2 ⊕Z18

Z4 ⊕Z3 ⊕Z3 22, 3, 3 3, 12 Z3 ⊕Z12

Z4 ⊕Z9 22, 23 36 Z36

11.1. The Upshot of the Fundamental Theorem. From the text in Hungerford, it may be
difficult to discern the upshot of this theorem. We review some of Gallian’s exposition in
Contemporary Abstract Algebra on the Fundamental Theorem. The Fundamental Theorem
of Finite Abelian Groups describes (up to isomorphism) all finite abelian groups in a
standard way. In words, the theorem says
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Every finite abelian group is a direct product of cyclic groups of prime-power order.
Moreover, the numbers of terms in the product and the orders of the cyclic groups
are uniquely determined by the group.

We have a classification of cyclic groups - we know a cyclic group of order n is isomor-
phic to Zn. Thus every finite abelian group G is isomorphic to a group of the form

Z
p
n1
1
⊕Z

p
n2
2
⊕ . . .⊕Z

p
nk
k

where the pi are not necessarily distinct primes and the prime powers pn11 , . . . ,pnkk are
uniquely determined by G. Writing a group in this form is determining the isomorphism
class of G - that is, we’ve expressed an isomorphic group to G, in a standard way.

For now, let’s look at abelian groups with order pk for p prime. In general, there is
one group of order pk for each set of positive integers whose sum is k (this is called
a partition), i.e. if k can be written as k = n1 + n2 . . .+ nt where each ni > 0. Then
Zpn1 ⊕Zpn2 ⊕ . . .⊕Zpnt is a group of order pk. So for k = 3 we have partitions 3, 2+
1, 1+ 1+ 1, for these three partitions we have groups

Zp3 , Zp2 ⊕Zp, Zp ⊕Zp ⊕Zp

How do we know these groups are not isomorphic? (Hint compare the order of ele-
ments of maximal order). The first has an element of order p3. The second an element of
order p2 (and any element raised to p2 is 0) and the third only elements of order p (and
all elements raised to p are 0).

Now let’s move on to arbitrary abelian groups, say of order n. When n has two or
more distinct prime divisors then we write n in its prime-power decomposition50, say
n = p

n1
1 p

n2
2 · · ·p

nk
k . Then we form all abelian groups of order pn21 then p

n2
2 , and so

on. Then we form all possible external products of these groups. For instance, let
n = 1176 = 23 · 3 · 72. Then the complete list of distinct isomorphism classes of abelian
groups of order 1176 is:

Z8 ⊕Z3 ⊕Z49

Z4 ⊕Z2 ⊕Z3 ⊕Z49

Z2 ⊕Z2 ⊕Z2 ⊕Z3 ⊕Z49

Z8 ⊕Z3 ⊕Z7 ⊕Z7

Z4 ⊕Z2 ⊕Z3 ⊕Z7 ⊕Z7

Z2 ⊕Z2 ⊕Z2 ⊕Z3 ⊕Z7 ⊕Z7

12. Conjugacy

In this section we discuss conjugacy. Most of the exposition here is drawn from 9.4.
Some is from Herstein [3] as Chapter 2, Section 11: Another Counting Principle51. In this
section Herstein points out that conjugacy can be thought of as a counting principle. A
favorite way of counting in mathematics is to count up a situation in two different ways,
the comparison of the two counts then can be used as a means for drawing conclusions.
Taking from Herstein:

50via Fundamental Theorem of Arithmetic
51Be careful if looking at Herstein - his notation in different than Hungerfords
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Generally speaking, one introduces an equivalence relation on a finite set, mea-
sures the size of the equivalence classes under this relation, and then equates the
number of elements in the set to the sum of the orders of these equivalence classes.

Let G be a group. Let a,b ∈ G. We say that a is conjugate to b if there exists x ∈ G such
that b = x−1ax.

We’ll use the idea of equivalence class here, which can be found in Appendix D.

Theorem 12.1. Conjugacy is an equivalence relation on G.

Proof. We write a ∼ b if a is conjugate to b.
(1) Reflexive. a ∼ a since a = e−1ae.
(2) Symmetric. Let a ∼ b. Then b = x−1ax. Thus xbx−1 = a so a = (x−1)−1b(x−1).
(3) Transitive. Let a ∼ b and b ∼ c. Then b = x−1ax and c = y−1by so c =

y−1(x−1ax)y = (xy)−1axy. So a ∼ c.
�

The equivalence classes of G under the relation of conjugacy are called conjugacy classes.
Thus the conjugacy class of a ∈ G is {b ∈ G : a ∼ b}. Standard results imply that two
conjugacy classes are either disjoint or equal and that the group is the union of all its
distinct conjugacy classes.

We’ll now show that the size of the conjugacy class of a is the index of a certain
subgroup. To get a feeling for this, notice that we can rewrite the conjugacy class as

{b ∈ G : a ∼ b} = {b ∈ Gb = x−1ax for some x ∈ G} = {x−1ax : x ∈ G}
Alright, so the conjugacy class of a is just the set of conjugates of a by every element

in the group. What happens for elements g ∈ G such that g−1ag = a?
Let G be a group. The centralizer of a is all elements of G that commute with a, and is

denoted C(a), i.e.
C(a) = {g ∈ G : ga = ag}

Proposition 12.2. If G is a group and a ∈ G then C(a) 6 G.

Proof. (1) C(a) is nonempty. e ∈ C(a) since ea = ae.
(2) Closed. Let x,y ∈ C(a). Then (xy)a = xyaxay = axy = a(xy).
(3) Inverses. Let x ∈ C(a). Then xa = ax. Multiply x−1 on right to get xax−1 = a

and then on left to get ax−1 = x−1a.
�

Theorem 12.3. Let G be a finite group. Let a ∈ G. The number of elements in conjugacy class
of a is [G : C(a)] and this number divides |G|.

Proof. Let S be the set of distinct right cosets of C(a).
Let T be the conjugacy class of a in G.
Define a function f : S→ T by

f(C(a)x) = x−1ax

We show that f is well-defined bijection (of sets). If so, then |T | = |S| = [G : C(a)], which
divides |G| by Lagrange’s Theorem.

We show with an ⇐⇒ proof that f is both well-defined and injective.
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Cx = Cy ⇐⇒ xy−1C

⇐⇒ (xy−1)a = a(xy−1) this follows from the definition of C(a)

⇐⇒ a = (xy−1)−1a(xy−1)

⇐⇒ a = yx−1axy−1

⇐⇒ y−1ay = x−1ax

⇐⇒ f(Cy) = f(Cx)

Reading the proof forward shows well-defined. Going backward shows injective.
Now for surjective - given any conjugate u−1au of awe have that f(Cu) = u−1au. Thus
f is bijective.

�

Now for some discussion. Let G be finite. Let C1,C2, . . . ,Ct be the distinct conjugacy
classes of G. Then

G = C1 ∪C2 ∪ . . .∪Ct
Since distinct conjugacy classes are mutually disjoint we have

|G| = |C1 ∪ . . .∪Ct| = |C1|+ . . .+ |Ct|

Now choose ai ∈ Ci. Then Ci consists of the conjugates of ai. By the Theorem 12.3 we
have |Ci| = [G : C(ai)]. This turns the above equation into

|G| = [G : C(a1)] + . . .+ [G : C(at)]

This equation is called the class equation of the group G. It is quite powerful.52

Notice that if c ∈ Z(G), then cx = xc for all x ∈ G. Thus c = x−1cx for all x, so that the
conjugacy class of c consists of only one element, i.e. {c}. Therefore we can rewrite the
class equation in the following form

|G| = |Z(G)|+ |C1|+ . . . |Cr|

where C1, . . . ,Cr are distinct conjugacy classes of G that contain more than one element
and each |Ci| divides |G|.

Corollary 12.4 (Herstein [3], 2.11.2). If |G| = pn where p is prime then Z(G) 6= 〈e〉.

Proof. The last version of the class equation gives

|G| = |Z(G)|+ |C1|+ . . . |Cr|

|G| = pn and |Ci| divides pn, thus |Ci| = p
ni for some 0 < ni < n. Therefore we have

pn = |Z(G)|+ pn1 + pn2 . . .+ pnr

Now p divides pn and p divides pn1 + pn2 . . .+ pnr since ni > 0. Thus p divides pn −
(pn1 + pn2 . . .+ pnr) = |G|− (|C1|+ . . . |Cr|) = |Z(G)|. Thus Z(G) 6= 〈e〉. �

52For instance, it is used to prove Sylow theorems. See [3] 2.11 for more applications.
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Notes

1 In Chapters 1-2 we worked with the rings Z and Zn; in Chapters 3 and 4 with the polynomial rings
F[x]. In Chapter 6 (and some in Chapter 3) we have abstracted away all of the idiosyncrasies of these
particular rings. We’ve built a very general and powerful framework with which to prove results about
all rings (subsuming most results about the specific examples we’ve worked on). This is a widespread
philosophy in mathematics, but runs particularly strongly through algebra. Perhaps some interesting
insight can be found in Colin McLarty’s essay on Alexander Grothendieck’s philosophy of ‘la mer qui
monte’ or ‘the rising sea’.53 I will quote him putting Grothendieck’s remarks in context.

Grothendieck describes two styles in mathematics. If you think of a theorem to be proved as a nut
to be opened, so as to reach “the nourishing flesh protected by the shell”, then the hammer and
chisel principle is: “put the cutting edge of the chisel against the shell and strike hard. If needed,
begin again at many different points until the shell cracks - and you are satisfied”. He says:

I can illustrate the second approach with the same image of a nut to be opened. The
first analogy that came to my mind is of immersing the nut in some softening liquid,
and why not simply water? From time to time you rub so the liquid penetrates better,
and otherwise you let time pass. The shell becomes more flexible through weeks and
monthswhen the time is ripe, hand pressure is enough, the shell opens like a perfectly
ripened avocado!
A different image came to me a few weeks ago. The unknown thing to be known
appeared to me as some stretch of earth or hard marl, resisting penetration. . . the sea
advances insensibly in silence, nothing seems to happen, nothing moves, the water is
so far off you hardly hear it. . . yet it finally surrounds the resistant substance.

In this “rising sea” the theorem is “submerged and dissolved by some more or less vast theory,
going well beyond the results originally to be established”

In many cases in Chapter 2 and 5, we’ve gone after problems with a ‘hammer and chisel’. Chapter 6

manifests the ‘rising sea’ philosophy.
2 Here’s a small primer on category theory. We may expand this endnote into a section of notes in

its own right. Category theory is a very primitive language for mathematics. That is one reason it is so
powerful. Here are some familiar examples of categories. Rings together with ring homomorphisms form
a category denoted Ring. Commutative rings form a category CRing (a ‘subcategory’ of Ring). Groups
with group homomorphisms form a category Grp. Topological spaces with continuous functions form a
category Top. Vector spaces over a field k together with linear maps Veck.

Categories provide an organizing principle: specify a collection of objects and the appropriate ‘structure-
preserving’ mappings, or morphisms between those objects. One reason this is elegant is that you specify
only what is needed, i.e. the appropriate ‘structure’ you’re interested in, and leave the rest behind. Noth-
ing too abstract is going on here; only very disciplined organization.

A good way to visualize categories is as graphs with objects as the vertices and morphisms as the
edges between vertices. Morphisms are subject to a composition relation, which specifies when following
one path of edges is equivalent to following another path. Here we can visualize a small category:

The self edges here represent the identity morphism, (the identity map), which we’ll see in the axioms
for a category below. Here’s a formal definition:

Definition 12.5. A categoryC consists of a collection of objects, denoted obj(C) and a set of morphismsHomC(a,b)
between any two objects a,b ∈ obj(C). An single morphism f : a→ b is also called an arrow since it points/maps
a→ b. The collection C must satisfy the following:

(1) Any two morphisms, say f ∈ HomC(a,b) and g ∈ HomC(b, c), can be composted to get another mor-
phism g ◦ f ∈ HomC(a, c).

(2) Composition is associative, i.e. h ∈ HomC(c,d) then h ◦ (g ◦ f) = (h ◦ g) ◦ f
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(3) For each object b ∈ obj(C) there is an identity morphism idb ∈ HomC(b,b) such that idb ◦ f = f and
g ◦ idb = g for f ∈ HomC(a,b) and g ∈ HomC(b, c)
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